版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖北省武漢市新洲區(qū)2023年高二上數(shù)學(xué)期末監(jiān)測(cè)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列滿足,且,,則()A. B.C. D.2.已知數(shù)列的通項(xiàng)公式為.若數(shù)列的前n項(xiàng)和為,則取得最大值時(shí)n的值為()A.2 B.3C.4 D.53.雙曲線:的一條漸近線與直線垂直,則它的離心率為()A. B.C. D.4.函數(shù)的導(dǎo)函數(shù)為()A. B.C. D.5.已知數(shù)列中,,(),則()A. B.C. D.26.已知數(shù)列中,,,是的前n項(xiàng)和,則()A. B.C. D.7.若曲線f(x)=x2的一條切線l與直線平行,則l的方程為()A.4x-y-4=0 B.x+4y-5=0C.x-4y+3=0 D.4x+y+4=08.已知點(diǎn),,若直線過(guò)點(diǎn)且與線段相交,則直線的斜率的取值范圍是()A. B.C. D.9.中國(guó)農(nóng)歷的二十四節(jié)氣是中華民族的智慧與傳統(tǒng)文化的結(jié)晶,二十四節(jié)氣歌是以春、夏、秋、冬開(kāi)始的四句詩(shī).在國(guó)際氣象界,二十四節(jié)氣被譽(yù)為“中國(guó)的第五大發(fā)明”.2016年11月30日,二十四節(jié)氣被正式列入聯(lián)合國(guó)教科文組織人類(lèi)非物質(zhì)文化遺產(chǎn)代表作名錄.某小學(xué)三年級(jí)共有學(xué)生600名,隨機(jī)抽查100名學(xué)生并提問(wèn)二十四節(jié)氣歌,只能說(shuō)出一句的有45人,能說(shuō)出兩句及以上的有38人,據(jù)此估計(jì)該校三年級(jí)的600名學(xué)生中,對(duì)二十四節(jié)氣歌一句也說(shuō)不出的有()A.17人 B.83人C.102人 D.115人10.在等差數(shù)列中,若,則()A.5 B.6C.7 D.811.已知命題,,則A., B.,C., D.,12.若,,則有()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列是等差數(shù)列,,公差,為其前n項(xiàng)和,滿足,則當(dāng)取得最大值時(shí),______14.萊昂哈德·歐拉于1765年在他的著作《三角形的幾何學(xué)》中首次提出定理:三角形的重心、垂心和外心共線.后來(lái)人們稱這條直線為該三角形的歐拉線.已知的三個(gè)頂點(diǎn)坐標(biāo)分別是,,,則的垂心坐標(biāo)為_(kāi)_____,的歐拉線方程為_(kāi)_____15.函數(shù)的圖象在點(diǎn)處的切線的方程是______.16.函數(shù)定義域?yàn)開(kāi)__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,五邊形為東京奧運(yùn)會(huì)公路自行車(chē)比賽賽道平面設(shè)計(jì)圖,根據(jù)比賽需要,在賽道設(shè)計(jì)時(shí)需預(yù)留出,兩條服務(wù)通道(不考慮寬度),,,,,為賽道.現(xiàn)已知,,千米,千米(1)求服務(wù)通道的長(zhǎng)(2)在上述條件下,如何設(shè)計(jì)才能使折線賽道(即)的長(zhǎng)度最大,并求最大值18.(12分)茶樹(shù)根據(jù)其茶葉產(chǎn)量可分為優(yōu)質(zhì)茶樹(shù)和非優(yōu)質(zhì)茶樹(shù),某茶葉種植研究小組選取了甲,乙兩塊試驗(yàn)田來(lái)檢驗(yàn)?zāi)撤N茶樹(shù)在不同的環(huán)境條件下的生長(zhǎng)情況.研究人員將100株該種茶樹(shù)幼苗在甲,乙兩塊試驗(yàn)田中進(jìn)行種植,成熟后統(tǒng)計(jì)每株茶樹(shù)的茶葉產(chǎn)量,將所得數(shù)據(jù)整理如下表所示:優(yōu)質(zhì)茶樹(shù)非優(yōu)質(zhì)茶樹(shù)甲試驗(yàn)田a25乙試驗(yàn)田10b已知甲試驗(yàn)田優(yōu)質(zhì)茶樹(shù)的比例為50%(1)求表中a,b的值;(2)根據(jù)表中數(shù)據(jù)判斷,是否有99%的把握認(rèn)為甲,乙兩塊試驗(yàn)田的環(huán)境差異對(duì)茶樹(shù)的生長(zhǎng)有影響?附:,其中.0.100.050.01k2.7063.8416.63519.(12分)已知橢圓,斜率為的動(dòng)直線與橢圓交于A,B兩點(diǎn),且直線與圓相切.(1)若,求直線的方程;(2)求三角形的面積的取值范圍.20.(12分)曲線與曲線在第一象限的交點(diǎn)為.曲線是()和()組成的封閉圖形.曲線與軸的左交點(diǎn)為、右交點(diǎn)為.(1)設(shè)曲線與曲線具有相同的一個(gè)焦點(diǎn),求線段的方程;(2)在(1)的條件下,曲線上存在多少個(gè)點(diǎn),使得,請(qǐng)說(shuō)明理由.(3)設(shè)過(guò)原點(diǎn)的直線與以為圓心的圓相切,其中圓的半徑小于1,切點(diǎn)為.直線與曲線在第一象限的兩個(gè)交點(diǎn)為..當(dāng)對(duì)任意直線恒成立,求的值.21.(12分)在矩形中,是的中點(diǎn),是上,,且,如圖,將沿折起至:(1)指出二面角的平面角,并說(shuō)明理由;(2)若,求證:平面平面;(3)若是線段的中點(diǎn),求證:直線平面;22.(10分)已知函數(shù),.(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)若在區(qū)間上有唯一的零點(diǎn).(?。┣蟮娜≈捣秶唬áⅲ┳C明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由已知兩個(gè)不等式,利用“兩邊夾”思想求得,然后利用累加法可求得【詳解】∵,∴,∴,又,∴,即,∴故選:A【點(diǎn)睛】本題考查數(shù)列的遞推式,由遞推式的特征,采用累加法求得數(shù)列的項(xiàng).解題關(guān)鍵是利用“兩邊夾”思想求解2、C【解析】根據(jù)單調(diào)性分析出數(shù)列的正數(shù)項(xiàng)有哪些即可求解.【詳解】由條件有,當(dāng)時(shí),,即;當(dāng)時(shí),,即.即,所以取得最大值時(shí)n的值為.故選:C3、A【解析】先利用直線的斜率判定一條漸近線與直線垂直,求出,再利用雙曲線的離心率公式和進(jìn)行求解.【詳解】因?yàn)橹本€的斜率為,所以雙曲線的一條漸近線與直線垂直,所以,即,則雙曲線的離心率.故選:A.卷II(非選擇題4、B【解析】利用復(fù)合函數(shù)求導(dǎo)法則即可求導(dǎo).【詳解】,故選:B.5、A【解析】由已知條件求出,可得數(shù)是以3為周期的周期數(shù)列,從而可得,進(jìn)而可求得答案【詳解】因?yàn)椋?),所以,所以數(shù)列的周期為3,,故選:A6、D【解析】由,得到為遞增數(shù)列,又由,得到,化簡(jiǎn),即可求解.【詳解】解:由,得,又,所以,所以,即,所以數(shù)列為遞增數(shù)列,所以,得,即,又由是的前項(xiàng)和,則.故選:D.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查數(shù)列求和問(wèn)題,關(guān)鍵在于由已知條件得出,運(yùn)用裂項(xiàng)相消求和法.7、D【解析】設(shè)切點(diǎn)為,則切線的斜率為,然后根據(jù)條件可得的值,然后可得答案.【詳解】設(shè)切點(diǎn)為,因?yàn)?,所以切線的斜率為因?yàn)榍€f(x)=x2的一條切線l與直線平行,所以,即所以l的方程為,即故選:D8、B【解析】直接利用兩點(diǎn)間的坐標(biāo)公式和直線的斜率的關(guān)系求出結(jié)果【詳解】解:直線過(guò)點(diǎn)且斜率為,與連接兩點(diǎn),的線段有公共點(diǎn),由圖,可知,,當(dāng)時(shí),直線與線段有交點(diǎn)故選:B9、C【解析】根據(jù)頻率計(jì)算出正確答案.【詳解】一句也說(shuō)不出的學(xué)生頻率為,所以估計(jì)名學(xué)生中,一句也說(shuō)不出的有人.故選:C10、B【解析】由得出.【詳解】由可得,故選:B11、A【解析】根據(jù)全稱命題與特稱命題互為否定的關(guān)系,即可求解,得到答案【詳解】由題意,根據(jù)全稱命題與特稱命題的關(guān)系,可得命題,,則,,故選A【點(diǎn)睛】本題主要考查了含有一個(gè)量詞的否定,其中解答中熟記全稱命題與特稱性命題的關(guān)系是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題12、D【解析】對(duì)待比較的代數(shù)式進(jìn)行作差,利用不等式基本性質(zhì),即可判斷大小.【詳解】因?yàn)?,又,,故,則,即;因?yàn)?,又,,故,則;綜上所述:.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、9或10【解析】等差數(shù)列通項(xiàng)公式的使用.【詳解】數(shù)列是等差數(shù)列,且,得,得,則有,又因?yàn)?,公差,所以?0時(shí),取得最大值故答案為:9或1014、①.##(0,1.5)②.【解析】由高線聯(lián)立可得垂心,由垂心與重心可得歐拉線方程.【詳解】由,可知邊上的高所在的直線為,又,因此邊上的高所在的直線的斜率為,所以邊上的高所在的直線為:,即,所以,所以的垂心坐標(biāo)為,由重心坐標(biāo)公式可得的重心坐標(biāo)為,所以的歐拉線方程為:,化簡(jiǎn)得.故答案為:;15、【解析】求導(dǎo),求得,,根據(jù)直線的點(diǎn)斜式方程求得答案.【詳解】因?yàn)椋?,所以切線的斜率,切線方程是,即.故答案為:.16、【解析】根據(jù)函數(shù)定義域的求法,即可求解.【詳解】解:,解得,故函數(shù)的定義域?yàn)?.故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)服務(wù)通道的長(zhǎng)為千米(2)時(shí),折線賽道的長(zhǎng)度最大,最大值為千米【解析】(1)先在中利用正弦定理得到長(zhǎng)度,再在中,利用余弦定理得到即可;(2)在中利用余弦定理得到,再根據(jù)基本等式求解最值即可.【小問(wèn)1詳解】在中,由正弦定理得:,在中,由余弦定理,得,即解得或(負(fù)值舍去)所以服務(wù)通道的長(zhǎng)為千米【小問(wèn)2詳解】在中,由余弦定理得:,即,所以因?yàn)?,所以,所以,即(?dāng)且僅當(dāng)時(shí)取等號(hào))即當(dāng)時(shí),折線賽道的長(zhǎng)度最大,最大值為千米18、(1);(2)有99%的把握認(rèn)為甲、乙兩塊試驗(yàn)田的環(huán)境差異對(duì)茶樹(shù)的生長(zhǎng)有影響【解析】(1)根據(jù)即可求出,從而可得到;(2)根據(jù)獨(dú)立性檢驗(yàn)的基本思想求出的觀測(cè)值,與6.635比較,即可判斷【小問(wèn)1詳解】甲試驗(yàn)田優(yōu)質(zhì)茶樹(shù)比例為50%,即,解得【小問(wèn)2詳解】,因?yàn)椋视?9%的把握認(rèn)為甲、乙兩塊試驗(yàn)田的環(huán)境差異對(duì)茶樹(shù)的生長(zhǎng)有影響19、(1)或(2)【解析】(1)設(shè)直線,利用圓心到直線的距離等于半徑,即可得到方程,求出,即可得解;(2)設(shè),,,利用圓心到直線的距離等于半徑,得到,再聯(lián)立直線與橢圓方程,消元列出韋達(dá)定理,利用弦長(zhǎng)公式表示出,再根據(jù)及基本不等式求出,最后再計(jì)算直線斜率不存在時(shí)三角形的面積,即可得解;【小問(wèn)1詳解】解:圓,圓心為,半徑;設(shè)直線,即,則,解得,所以或;【小問(wèn)2詳解】解:因?yàn)橹本€的斜率存在,設(shè),,,即,則,所以,即,聯(lián)立,消元整理得,所以,,所以所以因?yàn)椋?,?dāng)且僅當(dāng),即時(shí)取等號(hào),所以,當(dāng)軸時(shí),取,,則,此時(shí),所以;20、(1)或;(2)一共2個(gè),理由見(jiàn)解析;(3)答案見(jiàn)解析.【解析】(1)先求曲線的焦點(diǎn),再求點(diǎn)的坐標(biāo),分焦點(diǎn)為左焦點(diǎn)或右焦點(diǎn),求線段的方程;(2)分點(diǎn)在雙曲線或是橢圓的曲線上,結(jié)合條件,說(shuō)明點(diǎn)的個(gè)數(shù);(3)首先設(shè)出直線和圓的方程,利用直線與圓相切,以及直線與曲線相交,分別表示,并計(jì)算得到的值.【詳解】(1)兩個(gè)曲線相同的焦點(diǎn),,解得:,即雙曲線方程是,橢圓方程是,焦點(diǎn)坐標(biāo)是,聯(lián)立兩個(gè)曲線,得,,即,當(dāng)焦點(diǎn)是右焦點(diǎn)時(shí),線段的方程當(dāng)焦點(diǎn)時(shí)左焦點(diǎn)時(shí),,,線段的方程(2),假設(shè)點(diǎn)在曲線上單調(diào)遞增∴所以點(diǎn)不可能在曲線上所以點(diǎn)只可能在曲線上,根據(jù)得可以得到當(dāng)左焦點(diǎn),,同樣這樣的使得不存在所以這樣的點(diǎn)一共2個(gè)(3)設(shè)直線方程,圓方程為直線與圓相切,所以,,根據(jù)得到補(bǔ)充說(shuō)明:由于直線的曲線有兩個(gè)交點(diǎn),受參數(shù)的影響,蘊(yùn)含著如下關(guān)系,∵,當(dāng),存在,否則不存在這里可以不需討論,因?yàn)轭}目前假定直線與曲線有兩個(gè)交點(diǎn)的大前提,當(dāng)共焦點(diǎn)時(shí)存在不存在.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查直線與橢圓和雙曲線相交的綜合應(yīng)用,本題的關(guān)鍵是曲線由橢圓和雙曲線構(gòu)成,所以研究曲線上的點(diǎn)時(shí),需分兩種情況研究問(wèn)題.21、(1)為二面角的平面角,理由見(jiàn)解析(2)證明見(jiàn)解析(3)證明見(jiàn)解析【解析】(1)根據(jù),結(jié)合二面角定義得到答案.(2)證明平面得到,得到平面,得到證明.(3)延長(zhǎng),交于點(diǎn),連接,證明即可.【小問(wèn)1詳解】連接,則,,故為二面角的平面角.【小問(wèn)2詳解】,,,故平面,平面,故,又,,故平面,平面,故平面平面.【小問(wèn)3詳解】延長(zhǎng),交于點(diǎn),連接,易知,故故是的中點(diǎn),是線段的中點(diǎn),故,平面,且平面,故直線平面.22、(1);(2)(?。唬áⅲ┳C明見(jiàn)解析.【解析】(1)求出,,利用導(dǎo)數(shù)的幾何意義即可求得切線方程;(2)(ⅰ)根據(jù)題意對(duì)參數(shù)分類(lèi)討論,當(dāng)時(shí),等價(jià)轉(zhuǎn)化,且構(gòu)造函數(shù),利用零點(diǎn)存在定理,即可求得參數(shù)的取值范圍;(ⅱ)根據(jù)(?。┲兴蟮玫脚c的等量關(guān)系,求得并構(gòu)造函數(shù),利用導(dǎo)數(shù)研究其單調(diào)性和最值,則問(wèn)題得證.【小問(wèn)1詳解】當(dāng)時(shí),,則,故,,則曲線在點(diǎn)處的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB 12158-2024防止靜電事故通用要求
- 二零二五年度地質(zhì)災(zāi)害防治安全承包合同范本2篇
- 2025年度老舊廠房拆除重建項(xiàng)目轉(zhuǎn)讓合同3篇
- 二零二五版UPS不間斷電源系統(tǒng)在數(shù)據(jù)中心節(jié)能改造中的應(yīng)用合同3篇
- 二零二五年度食品安全樣本檢驗(yàn)合同2篇
- 2025年度物業(yè)管理委托合同(住宅小區(qū))3篇
- 三方監(jiān)理服務(wù)協(xié)議:2024年度工程監(jiān)管協(xié)議版B版
- 二零二五版公司銷(xiāo)售業(yè)務(wù)員合同協(xié)議書(shū)含虛擬貨幣交易業(yè)務(wù)合作3篇
- 2024年轎車(chē)物流服務(wù)協(xié)議模板版B版
- 2024煙花爆竹行業(yè)信用風(fēng)險(xiǎn)防范購(gòu)銷(xiāo)合同管理3篇
- 2025年山東光明電力服務(wù)公司招聘筆試參考題庫(kù)含答案解析
- 《神經(jīng)發(fā)展障礙 兒童社交溝通障礙康復(fù)規(guī)范》
- 詩(shī)詞接龍(飛花令)PPT
- 子宮內(nèi)膜癌(課堂PPT)
- 澳大利亞公司法1-30
- 海上試油測(cè)試技術(shù)0327
- 中國(guó)地圖標(biāo)準(zhǔn)版(可編輯顏色)
- 瑪氏銷(xiāo)售常用術(shù)語(yǔ)中英對(duì)照
- (完整)貓咪上門(mén)喂養(yǎng)服務(wù)協(xié)議書(shū)
- 上海牛津版三年級(jí)英語(yǔ)3B期末試卷及答案(共5頁(yè))
- 行為疼痛量表BPS
評(píng)論
0/150
提交評(píng)論