浙江衢州四校2024屆數(shù)學(xué)高二上期末復(fù)習檢測試題含解析_第1頁
浙江衢州四校2024屆數(shù)學(xué)高二上期末復(fù)習檢測試題含解析_第2頁
浙江衢州四校2024屆數(shù)學(xué)高二上期末復(fù)習檢測試題含解析_第3頁
浙江衢州四校2024屆數(shù)學(xué)高二上期末復(fù)習檢測試題含解析_第4頁
浙江衢州四校2024屆數(shù)學(xué)高二上期末復(fù)習檢測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

浙江衢州四校2024屆數(shù)學(xué)高二上期末復(fù)習檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知正方體中,分別為棱的中點,則直線與所成角的余弦值為()A. B.C. D.2.已知,則條件“”是條件“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件.3.已知、分別為雙曲線的左、右焦點,且,點P為雙曲線右支一點,為的內(nèi)心,若成立,給出下列結(jié)論:①點的橫坐標為定值a;②離心率;③;④當軸時,上述結(jié)論正確的是()A.①② B.②③C.①②③ D.②③④4.在等差數(shù)列中,為數(shù)列的前項和,,,則數(shù)列的公差為()A. B.C.4 D.5.已知橢圓與直線交于A,B兩點,點為線段的中點,則a的值為()A. B.3C. D.6.命題,,則是()A., B.,C., D.,7.已知是等差數(shù)列的前項和,,,則的最小值為()A. B.C. D.8.已知實數(shù),滿足不等式組,若,則的最小值為()A. B.C. D.9.等軸雙曲線的中心在原點,焦點在軸上,與拋物線的準線交于兩點,且則的實軸長為A.1 B.2C.4 D.810.如圖是正方體的平面展開圖,在這個正方體中①與平行;②與是異面直線;③與成60°角;④與是異面直線以上四個結(jié)論中,正確結(jié)論的序號是A.①②③ B.②④C.③④ D.②③④11.已知等比數(shù)列的前項和為,則關(guān)于的方程的解的個數(shù)為()A.0 B.1C.無數(shù)個 D.0或無數(shù)個12.如右圖,一個直徑為1的小圓沿著直徑為2的大圓內(nèi)壁的逆時針方向滾動,M和N是小圓的一條固定直徑的兩個端點.那么,當小圓這樣滾過大圓內(nèi)壁的一周,點M,N在大圓內(nèi)所繪出的圖形大致是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線與雙曲線無公共點,則雙曲線離心率的取值范圍是____14.已知雙曲線,則圓的圓心C到雙曲線漸近線的距離為______15.已知函數(shù)在上單調(diào)遞減,則的取值范圍是______.16.無窮數(shù)列滿足:只要必有則稱為“和諧遞進數(shù)列”.已知為“和諧遞進數(shù)列”,且前四項成等比數(shù)列,,則=_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直三棱柱中,,,E、F分別是、的中點,D為棱上的點.(1)證明:;(2)當時,求直線BF與平面DEF所成角的正弦值.18.(12分)已知,,函數(shù),直線是函數(shù)圖象的一條對稱軸(1)求函數(shù)的解析式及單調(diào)遞增區(qū)間;(2)若,,的面積為,求的周長19.(12分)如圖,在直三棱柱中,,,,分別為,,的中點,點在棱上,且,,.(1)求證:平面;(2)求證:平面平面;(3)求平面與平面的距離.20.(12分)已知數(shù)列的前n項和,滿足,.(1)求證:數(shù)列是等差數(shù)列;(2)令,求數(shù)列的前n項和.21.(12分)已知為數(shù)列的前n項和,,且,,其中為常數(shù).(1)求證:數(shù)列為等差數(shù)列;(2)是否存在,使得是等差數(shù)列?并說明理由.22.(10分)已知函數(shù).(1)當時,解不等式;(2)若不等式的解集為,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】以D為原點建立空間直角坐標系,求出E,F,B,D1點的坐標,利用直線夾角的向量求法求解【詳解】如圖,以D為原點建立空間直角坐標系,設(shè)正方體的邊長為2,則,,,,,直線與所成角的余弦值為:.故選D【點睛】本題主要考查了空間向量的應(yīng)用及向量夾角的坐標運算,屬于基礎(chǔ)題2、A【解析】若命題,則p是q的充分不必要條件,q是p的必要不充分條件【詳解】因為,所以,所以.故選:A3、C【解析】利用雙曲線的定義、幾何性質(zhì)以及題意對選項逐個分析判斷即可【詳解】對于①,設(shè)內(nèi)切圓與的切點分別為,則由切線長定理可得,因為,,所以,所以點的坐標為,所以點的橫坐標為定值a,所以①正確,對于②,因為,所以,化簡得,即,解得,因為,所以,所以②正確,對于③,設(shè)的內(nèi)切圓半徑為,由雙曲線的定義可得,,因為,,所以,所以,所以③正確,對于④,當軸時,可得,此時,所以,所以④錯誤,故選:C4、A【解析】由已知條件列方程組求解即可【詳解】設(shè)等差數(shù)列的公差為,因為,,所以,解得,故選:A5、A【解析】先聯(lián)立直線和橢圓的方程,結(jié)合中點公式及點可求a的值.【詳解】設(shè),聯(lián)立,得,,因為點為線段的中點,所以,即,解得,因為,所以.故選:A.6、D【解析】根據(jù)特稱命題的否定為全稱命題,即可得到答案.【詳解】因為命題,,所以,.故選:D7、C【解析】根據(jù),可得,再根據(jù),得,從而可得出答案.【詳解】解:因為,所以,又,所以,所以的最小值為.故選:C.8、B【解析】作出不等式組對應(yīng)的平面區(qū)域,然后根據(jù)線性規(guī)劃的幾何意義求得答案.【詳解】作出不等式組所對應(yīng)的可行域如圖三角形陰影部分,平行移動直線直線,可以看到當移動過點A時,在y軸上的截距最小,聯(lián)立,解得,當且僅當動直線即過點時,取得最小值為,故選:B9、B【解析】設(shè)等軸雙曲線的方程為拋物線,拋物線準線方程為設(shè)等軸雙曲線與拋物線的準線的兩個交點,,則,將,代入,得等軸雙曲線的方程為的實軸長為故選10、C【解析】根據(jù)平面展開圖可得原正方體,根據(jù)各點的分布逐項判斷可得正確的選項.【詳解】由平面展開圖可得原正方體如圖所示:由圖可得:為異面直線,與不是異面直線,是異面直線,故①②錯誤,④正確.連接,則為等邊三角形,而,故或其補角為與所成的角,因為,故與所成的角為,故③正確.綜上,正確命題的序號為:③④.故選:C.【點睛】本題考查正方體的平面展開圖,注意展開圖中的點與正方體中的頂點的對應(yīng)關(guān)系,本題屬于容易題.11、D【解析】利用等比數(shù)列的求和公式討論公比的取值即得.【詳解】設(shè)等比數(shù)列的公比為,當時,,因為,所以無解,即方程的解的個數(shù)為0,當時,,所以時,方程有無數(shù)個偶數(shù)解,當時,方程無解,綜上,關(guān)于的方程的解的個數(shù)為0或無數(shù)個.故選:D.12、A【解析】如圖:如圖,取小圓上一點,連接并延長交大圓于點,連接,,則在小圓中,,在大圓中,,根據(jù)大圓的半徑是小圓半徑的倍,可知的中點是小圓轉(zhuǎn)動一定角度后的圓心,且這個角度恰好是,綜上可知小圓在大圓內(nèi)壁上滾動,圓心轉(zhuǎn)過角后的位置為點,小圓上的點,恰好滾動到大圓上的也就是此時的小圓與大圓的切點.而在小圓中,圓心角(是小圓與的交點)恰好等于,則,而點與點其實是同一個點在不同時刻的位置,則可知點與點是同一個點在不同時刻的位置.由于的任意性,可知點的軌跡是大圓水平的這條直徑.類似的可知點的軌跡是大圓豎直的這條直徑.故選A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】聯(lián)立直線得,由無公共點得,進而得,即可求出離心率的取值范圍.【詳解】聯(lián)立直線與雙曲線可得,整理得,顯然,由方程無解可得,即,則,,又離心率大于1,故離心率的取值范圍是.故答案為:.14、2【解析】求出圓心和雙曲線的漸近線方程,即得解.【詳解】解:由題得圓的圓心為,雙曲線的漸近線方程為,即.所以圓心到雙曲線漸近線的距離為.故答案為:215、【解析】先求導(dǎo),求出函數(shù)的單調(diào)遞減區(qū)間,由即可求解.【詳解】,令,得,即的單調(diào)遞減區(qū)間是,又在上單調(diào)遞減,可得,即.故答案為:.16、7578【解析】根據(jù)新定義得數(shù)列是周期數(shù)列,從而易求得【詳解】∵成等比數(shù)列,,∴,又,為“和諧遞進數(shù)列”,∴,,,,…,∴數(shù)列是周期數(shù)列,周期為4∴故答案為:7578三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)由題意建立如圖所示的空間直角坐標系,利用空間向量證明即可,(2)求出平面DEF的法向量,利用空間向量求解【小問1詳解】證明:因為三棱柱是直三棱柱,且,所以兩兩垂直,所以以為原點,以所在的直線分別為軸建立空間直角坐標系,則,,設(shè),則,所以,所以,所以【小問2詳解】因為,所以,所以,設(shè)平面一個法向量為,則,令,則,設(shè)直線BF與平面DEF所成角為,則,所以直線BF與平面DEF所成角的正弦值為18、(1),單調(diào)遞增區(qū)間為.(2)【解析】(1)先利用向量數(shù)量積運算、二倍角公式、輔助角公式求出,再求單增區(qū)間;(2)利用面積公式求出,再利用余弦定理求出,即可求出周長.小問1詳解】已知,,函數(shù),所以.因為直線是函數(shù)圖象的一條對稱軸,所以,所以,又,所以當k=0時,符合題意,此時要求的單調(diào)遞增區(qū)間,只需,解得:,所以的單調(diào)遞增區(qū)間為.【小問2詳解】由于,所以,所以.因為,所以.因為的面積為,所以,即,解得:.又,由余弦定理可得:,即,所以,所以,所以的周長.19、(1)見解析(2)見解析(3)【解析】(1)利用勾股定理證得,證明平面,根據(jù)線面垂直的性質(zhì)證得,再根據(jù)線面垂直的判定定理即可得證;(2)取的中點,連接,可得為的中點,證明,四邊形是平行四邊形,可得,再根據(jù)面面平行的判定定理即可得證;(3)設(shè),由(1)(2)可得即為平面與平面的距離,求出的長度,即可得解.【小問1詳解】證明:在直三棱柱中,為的中點,,,故,因為,所以,又平面,平面,所以,又因,,所以平面,又平面,所以,又,所以平面;【小問2詳解】證明:取的中點,連接,則為的中點,因為,,分別為,,的中點,所以,且,所以四邊形是平行四邊形,所以,所以,又平面,平面,所以平面,因為,所以,又平面,平面,所以平面,又因,平面,平面,所以平面平面;【小問3詳解】設(shè),因為平面,平面平面,所以平面,所以即為平面與平面的距離,因平面,所以,,所以,即平面與平面的距離為.20、(1)證明見解析(2)【解析】(1)先將變?yōu)?,然后等式兩邊同除即可得答案;?)求出,再用錯位相減求和【小問1詳解】證明:∵∴由已知易得,∴∴數(shù)列是首項,公差為的等差數(shù)列;【小問2詳解】由(1)可知,∴∴①②①-②有∴21、(1)詳見解析;(2)存在時是等差數(shù)列,詳見解析.【解析】(1)利用與的關(guān)系可得,再結(jié)合條件即證;(2)由題可得,,若是等差數(shù)列,可得,進而可求數(shù)列的通項公式,即證.【小問1詳解】∵,∴,∴,又,∴,∴,∴數(shù)列為等差數(shù)列;【小問2詳解】∵,,∴,又,∴,若是等差數(shù)列,則,即,解得,當時,由,∴數(shù)列的奇數(shù)項構(gòu)成的數(shù)列為首項為1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論