版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
無錫市重點中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若向量,,則()A. B.C. D.2.若函數(shù),滿足且,則()A.1 B.2C.3 D.43.拋物線的焦點為F,A,B是拋物線上兩點,若,若AB的中點到準(zhǔn)線的距離為3,則AF的中點到準(zhǔn)線的距離為()A.1 B.2C.3 D.44.設(shè),分別是雙曲線:的左、右焦點,過點作的一條漸近線的垂線,垂足為,,為坐標(biāo)原點,則雙曲線的離心率為()A. B.2C. D.5.過點且斜率為的直線方程為()A. B.C D.6.已知等比數(shù)列的前n項和為,且,則()A.20 B.30C.40 D.507.已知,,則等于()A.2 B.C. D.8.已知是雙曲線的左焦點,為右頂點,是雙曲線上的點,軸,若,則雙曲線的離心率為()A. B.C. D.9.已知函數(shù).若數(shù)列的前n項和為,且滿足,,則的最大值為()A.9 B.12C.20 D.10.已知雙曲線的離心率為2,且與橢圓有相同的焦點,則該雙曲線的漸近線方程為()A. B.C. D.11.為了解一片大約一萬株樹木的生長情況,隨機測量了其中100株樹木的底部周長(單位:㎝).根據(jù)所得數(shù)據(jù)畫出的樣本頻率分布直方圖如圖,那么在這片樹木中,底部周長小于110㎝的株樹大約是()A.3000 B.6000C.7000 D.800012.已知拋物線的焦點是雙曲線的一個焦點,則雙曲線的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是雙曲線的左焦點,圓與雙曲線在第一象限的交點,若的中點在雙曲線的漸近線上,則此雙曲線的離心率是___________.14.已知雙曲線的右焦點為,過點作軸的垂線,在第一象限與雙曲線及其漸近線分別交于,兩點.若,則雙曲線的離心率為___________.15.九連環(huán)是中國的一種古老智力游對,它用九個圓環(huán)相連成串,環(huán)環(huán)相扣,以解開為勝,趣味無窮.中國的末代皇帝溥儀(1906-1967)也曾有一個精美的由九個翡翠繯相連的銀制的九連環(huán)(如圖).現(xiàn)假設(shè)有個圓環(huán),用表示按照某種規(guī)則解下個圓環(huán)所需的銀和翠玉制九連環(huán)最少移動次數(shù),且數(shù)列滿足,,則___________.16.過拋物線的焦點作直線交拋物線于兩點,為坐標(biāo)原點,記直線的斜率分別為,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在等差數(shù)列中,,.(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和.18.(12分)已知數(shù)列的前項和滿足(1)證明:數(shù)列為等比數(shù)列;(2)若數(shù)列為等差數(shù)列,且,,求數(shù)列的前項和19.(12分)設(shè)分別為橢圓的左右焦點,過的直線l與橢圓C相交于A,B兩點,直線的傾斜角為60度,到直線l的距離為(1)求橢圓C的焦距;(2)如果,求橢圓C的方程20.(12分)設(shè)命題方程表示中心在原點,焦點在坐標(biāo)軸上的雙曲線;命題,,若“”為假命題,“”為真命題,求實數(shù)的取值范圍.21.(12分)芯片作為在集成電路上的載體,廣泛應(yīng)用在手機、軍工、航天等多個領(lǐng)域,是能夠影響一個國家現(xiàn)代工業(yè)的重要因素.根據(jù)市場調(diào)研與統(tǒng)計,某公司七年時間里在芯片技術(shù)上的研發(fā)投入x(億元)與收益y(億元)的數(shù)據(jù)統(tǒng)計如下:(1)根據(jù)折線圖的數(shù)據(jù),求y關(guān)于x的線性回歸方程(系數(shù)精確到整數(shù)部分);(2)為鼓勵科技創(chuàng)新,當(dāng)研發(fā)技術(shù)投入不少于16億元時,國家給予公司補貼5億元,預(yù)測當(dāng)芯片的研發(fā)投入為17億元時公司的實際收益附:其回歸方程的斜率和截距的最小二乘法估計分別為,.參考數(shù)據(jù),22.(10分)已知四邊形是菱形,四邊形是矩形,平面平面,,,G是的中點(1)證明:平面;(2)求二面角的正弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由向量數(shù)量積的坐標(biāo)運算求得數(shù)量積,模,結(jié)合向量的共線定義判斷【詳解】由已知,,,與不垂直,若,則,,但是,,因此與不共線故選:D2、C【解析】先取,得與之間的關(guān)系,然后根據(jù)導(dǎo)數(shù)的運算直接求導(dǎo),代值可得.【詳解】取,則有,即,又因為所以,所以,所以.故選:C3、C【解析】結(jié)合拋物線的定義求得,由此求得線段的中點到準(zhǔn)線的距離【詳解】拋物線方程為,則,由于中點到準(zhǔn)線的距離為3,結(jié)合拋物線的定義可知,即,所以線段的中點到準(zhǔn)線的距離為.故選:C4、D【解析】先求過右焦點且與漸近線垂直的直線方程,與漸近線方程聯(lián)立求點P的坐標(biāo),再用兩點間的距離公式,結(jié)合已知條件,得到關(guān)于a,c的關(guān)系式.【詳解】雙曲線的左右焦點分別為、,一條漸近線方程為,過與這條漸近線垂直的直線方程為,由,得到點P的坐標(biāo)為,又因為,所以,所以,所以.故選:D5、B【解析】利用點斜式可得出所求直線的方程.【詳解】由題意可知所求直線的方程為,即.故選:B.6、B【解析】利用等比數(shù)列的前n項和公式即可求解.【詳解】設(shè)等比數(shù)列的首項為,公比為,則,由得,即,解得或(舍),且代入①得,則,所以.故選:B.7、D【解析】利用兩角和的正切公式計算出正確答案.【詳解】.故選:D8、C【解析】根據(jù)條件可得與,進而可得,,的關(guān)系,可得解.【詳解】由已知得,設(shè)點,由軸,則,代入雙曲線方程可得,即,又,所以,即,整理可得,故,解得或(舍),故選:C.9、C【解析】先得到及遞推公式,要想最大,則分兩種情況,負(fù)數(shù)且最小或為正數(shù)且最大,進而求出最大值.【詳解】①,當(dāng)時,,當(dāng)時,②,所以①-②得:,整理得:,所以,或,當(dāng)是公差為2的等差數(shù)列,且時,最小,最大,此時,所以,此時;當(dāng)且是公差為2的等差數(shù)列時,最大,最大,此時,所以,此時綜上:的最大值為20故選:C【點睛】方法點睛:數(shù)列相關(guān)的最值求解,要結(jié)合題干條件,使用不等式放縮,函數(shù)單調(diào)性或?qū)Ш瘮?shù)等進行求解.10、B【解析】求出焦點,則可得出,即可求出漸近線方程.【詳解】由橢圓可得焦點為,則設(shè)雙曲線方程為,可得,則離心率,解得,則,所以漸近線方程為.故選:B.11、C【解析】先由頻率分布直方圖得到抽取的樣本中底部周長小于110㎝的概率,進而可求出結(jié)果.【詳解】由頻率分布直方圖可得,樣本中底部周長小于110㎝的概率為,因此在這片樹木中,底部周長小于110㎝的株樹大約是.故選:C.【點睛】本題主要考查頻率分布直方圖的應(yīng)用,屬于基礎(chǔ)題型.12、B【解析】根據(jù)拋物線和寫出焦點坐標(biāo),利用題干中的坐標(biāo)相等,解出,結(jié)合從而求出答案.【詳解】拋物線的焦點為,雙曲線的,,所以,所以雙曲線的右焦點為:,由題意,,兩邊平方解得,,則雙曲線的漸近線方程為:.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】計算點漸近線的距離,從而得,由勾股定理計算,由雙曲線定義列式,從而計算得,即可計算出離心率.【詳解】設(shè)雙曲線右焦點為,因為的中點在雙曲線的漸近線上,由可知,,因為為中點,所以,所以,即垂直平分線段,所以到漸近線的距離為,可得,所以,由雙曲線定義可知,,即,所以,所以.故答案為:【點睛】雙曲線的離心率是橢圓最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關(guān)于的齊次式,結(jié)合轉(zhuǎn)化為的齊次式,然后等式(不等式)兩邊分別除以或轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式)即可得(的取值范圍)14、【解析】按題意求得,兩點坐標(biāo),以代數(shù)式表達(dá)出條件,即可得到關(guān)于的關(guān)系式,進而解得雙曲線的離心率.【詳解】雙曲線的右焦點為,其漸近線為,垂線方程為,則,,,由,得,即即,則,離心率故答案為:15、684【解析】利用累加法可求得的值.【詳解】當(dāng)且時,,所以,.故答案為:.16、【解析】過焦點作直線要分為有斜率和斜率不存在兩種情況進行分類討論.【詳解】拋物線的焦點當(dāng)過焦點的直線斜率不存在時,直線方程可設(shè)為,不妨令則,故當(dāng)過焦點的直線斜率存在時,直線方程可設(shè)為,令由整理得則,綜上,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)已知條件求得,由此求得數(shù)列的通項公式.(2)令,分和去掉絕對值,根據(jù)等差數(shù)列的求和公式求得.【小問1詳解】設(shè)等差數(shù)列的公差為,∵,,所以,所以,則.【小問2詳解】令,解得,當(dāng)時,,,當(dāng)時,.18、(1)證明見解析(2)【解析】(1)由與的關(guān)系,利用等比數(shù)列的定義證明即可;(2)由(1)求出,再利用裂項相消法求解即可【小問1詳解】當(dāng)時,,,當(dāng)時,,,,數(shù)列是以為首項、以為公比的等比數(shù)列【小問2詳解】由(1)得,,即,,設(shè)等差數(shù)列的公差為,則,,,,,19、(1)(2)【解析】(1)求得直線的方程,利用點到直線的距離列方程,由此求得,進而求得焦距.(2)聯(lián)立直線的方程和橢圓方程,化簡寫出根與系數(shù)關(guān)系,結(jié)合來求得,從而求得橢圓的方程.【小問1詳解】依題意,直線的方程為,到的距離為,所以焦距.【小問2詳解】由,消去并化簡得,設(shè),則,,,,,所以,,,,,,,,,所以,所以橢圓的方程為.20、【解析】求出當(dāng)命題、分別為真命題時實數(shù)的取值范圍,分析可知、中一真一假,分真假、假真兩種情況討論,求出對應(yīng)的實數(shù)的取值范圍,綜合可得結(jié)果.【詳解】解:若為真命題,則,即,解得,若為真命題,則,解得,因為“”為假命題,“”為真命題,則、中一真一假,若真假,則,可得,若假真,則,此時.綜上所述,實數(shù)的范圍為.21、(1)(2)85億元【解析】(1)利用公式和數(shù)據(jù)計算即可(2)代入回歸直線計算即可【小問1詳解】由折線圖中數(shù)據(jù)知,,,因為,所以所以y關(guān)于x的線性回歸方程為【小問2詳解】當(dāng)時,億元,此時公司的實際收益的預(yù)測值為億元22、(1)證明見解析(2)【解析】(1)設(shè),線段的中點為H,分別連接,可證,從而可得平面;(2)建立如圖所示的空間直角坐標(biāo)系,求出平面的一個法向量和平面的一個法向量后可求二面角的余弦值.【小問1詳解】證
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度鋼材水泥市場調(diào)研與風(fēng)險評估合同2篇
- 二零二五年度變壓器節(jié)能補貼申請與使用合同范本3篇
- 二零二五版加工承攬合同全文詳盡規(guī)定承攬物、報酬及質(zhì)量標(biāo)準(zhǔn)3篇
- 二零二五版合伙人業(yè)務(wù)拓展合同范本3篇
- 二零二五年度貨物包裝合同范本3篇
- 2025年度森林防火物資儲備與供應(yīng)標(biāo)準(zhǔn)植樹承包合同示范文本3篇
- 2024版權(quán)轉(zhuǎn)讓合同轉(zhuǎn)讓價格及支付方式
- 2024版環(huán)保設(shè)備生產(chǎn)與安裝合同
- 二零二五年房產(chǎn)分割公證合同書3篇
- 2024版環(huán)保型彩鋼板房安裝協(xié)議版B版
- 河南省鄭州外國語高中-【高二】【上期中】【把握現(xiàn)在 蓄力高三】家長會【課件】
- 天津市武清區(qū)2024-2025學(xué)年八年級(上)期末物理試卷(含解析)
- 2025年中煤電力有限公司招聘筆試參考題庫含答案解析
- 企業(yè)內(nèi)部控制與財務(wù)風(fēng)險防范
- 高端民用航空復(fù)材智能制造交付中心項目環(huán)評資料環(huán)境影響
- 建設(shè)項目施工現(xiàn)場春節(jié)放假期間的安全管理方案
- 胃潴留護理查房
- 植物細(xì)胞中氨基酸轉(zhuǎn)運蛋白的一些已知或未知的功能
- 山東省高等學(xué)校精品課程
- 三菱張力控制器LE-40MTA-E說明書
- 生活垃圾填埋場污染控制標(biāo)準(zhǔn)
評論
0/150
提交評論