




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
中考數(shù)學(xué)平行四邊形-經(jīng)典壓軸題及答案解析一、平行四邊形1.如圖1,四邊形ABCD是正方形,G是CD邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)G與C、D不重合),以CG為一邊在正方形ABCD外作正方形CEFG,連接BG,DE.(1)①猜想圖1中線段BG、線段DE的長(zhǎng)度關(guān)系及所在直線的位置關(guān)系,不必證明;②將圖1中的正方形CEFG繞著點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)任意角度α,得到如圖2情形.請(qǐng)你通過(guò)觀察、測(cè)量等方法判斷①中得到的結(jié)論是否仍然成立,并證明你的判斷.(2)將原題中正方形改為矩形(如圖3、4),且AB=a,BC=b,CE=ka,CG=kb(a≠b,k>0),第(1)題①中得到的結(jié)論哪些成立,哪些不成立?若成立,以圖4為例簡(jiǎn)要說(shuō)明理由.(3)在第(2)題圖4中,連接DG、BE,且a=3,b=2,k=,求BE2+DG2的值.【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,證明見(jiàn)解析;(2)BG⊥DE,證明見(jiàn)解析;(3)16.25.【解析】分析:(1)①根據(jù)正方形的性質(zhì),顯然三角形BCG順時(shí)針旋轉(zhuǎn)90°即可得到三角形DCE,從而判斷兩條直線之間的關(guān)系;②結(jié)合正方形的性質(zhì),根據(jù)SAS仍然能夠判定△BCG≌△DCE,從而證明結(jié)論;(2)根據(jù)兩條對(duì)應(yīng)邊的比相等,且?jiàn)A角相等可以判定上述兩個(gè)三角形相似,從而可以得到(1)中的位置關(guān)系仍然成立;(3)連接BE、DG.根據(jù)勾股定理即可把BE2+DG2轉(zhuǎn)換為兩個(gè)矩形的長(zhǎng)、寬平方和.詳解:(1)①BG⊥DE,BG=DE;②∵四邊形ABCD和四邊形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE,∴BG=DE,∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(2)∵AB=a,BC=b,CE=ka,CG=kb,∴,又∵∠BCG=∠DCE,∴△BCG∽△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(3)連接BE、DG.根據(jù)題意,得AB=3,BC=2,CE=1.5,CG=1,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.點(diǎn)睛:此題綜合運(yùn)用了全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)以及勾股定理.2.(1)、動(dòng)手操作:如圖①:將矩形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)處,折痕為EF,若∠ABE=20°,那么的度數(shù)為.(2)、觀察發(fā)現(xiàn):小明將三角形紙片ABC(AB>AC)沿過(guò)點(diǎn)A的直線折疊,使得AC落在AB邊上,折痕為AD,展開(kāi)紙片(如圖②);再次折疊該三角形紙片,使點(diǎn)A和點(diǎn)D重合,折痕為EF,展平紙片后得到△AEF(如圖③).小明認(rèn)為△AEF是等腰三角形,你同意嗎?請(qǐng)說(shuō)明理由.(3)、實(shí)踐與運(yùn)用:將矩形紙片ABCD按如下步驟操作:將紙片對(duì)折得折痕EF,折痕與AD邊交于點(diǎn)E,與BC邊交于點(diǎn)F;將矩形ABFE與矩形EFCD分別沿折痕MN和PQ折疊,使點(diǎn)A、點(diǎn)D都與點(diǎn)F重合,展開(kāi)紙片,此時(shí)恰好有MP=MN=PQ(如圖④),求∠MNF的大小.【答案】(1)125°;(2)同意;(3)60°【解析】試題分析:(1)根據(jù)直角三角形的兩個(gè)銳角互余求得∠AEB=70°,根據(jù)折疊重合的角相等,得∠BEF=∠DEF=55°,根據(jù)平行線的性質(zhì)得到∠EFC=125°,再根據(jù)折疊的性質(zhì)得到∠EFC′=∠EFC=125°;(2)根據(jù)第一次折疊,得∠BAD=∠CAD;根據(jù)第二次折疊,得EF垂直平分AD,根據(jù)等角的余角相等,得∠AEG=∠AFG,則△AEF是等腰三角形;(3)由題意得出:∠NMF=∠AMN=∠MNF,MF=NF,由對(duì)稱性可知,MF=PF,進(jìn)而得出△MNF≌△MPF,得出3∠MNF=180°求出即可.試題解析:(1)、∵在直角三角形ABE中,∠ABE=20°,∴∠AEB=70°,∴∠BED=110°,根據(jù)折疊重合的角相等,得∠BEF=∠DEF=55°.∵AD∥BC,∴∠EFC=125°,再根據(jù)折疊的性質(zhì)得到∠EFC′=∠EFC=125°.;(2)、同意,如圖,設(shè)AD與EF交于點(diǎn)G由折疊知,AD平分∠BAC,所以∠BAD=∠CAD.由折疊知,∠AGE=∠DGE=90°,所以∠AGE=∠AGF=90°,所以∠AEF=∠AFE.所以AE=AF,即△AEF為等腰三角形.(3)、由題意得出:∠NMF=∠AMN=∠MNF,∴MF=NF,由折疊可知,MF=PF,∴NF=PF,而由題意得出:MP=MN,又∵M(jìn)F=MF,∴△MNF≌△MPF,∴∠PMF=∠NMF,而∠PMF+∠NMF+∠MNF=180°,即3∠MNF=180°,∴∠MNF=60°.考點(diǎn):1.折疊的性質(zhì);2.等邊三角形的性質(zhì);3.全等三角形的判定和性質(zhì);4.等腰三角形的判定3.四邊形ABCD是正方形,AC與BD,相交于點(diǎn)O,點(diǎn)E、F是直線AD上兩動(dòng)點(diǎn),且AE=DF,CF所在直線與對(duì)角線BD所在直線交于點(diǎn)G,連接AG,直線AG交BE于點(diǎn)H.(1)如圖1,當(dāng)點(diǎn)E、F在線段AD上時(shí),①求證:∠DAG=∠DCG;②猜想AG與BE的位置關(guān)系,并加以證明;(2)如圖2,在(1)條件下,連接HO,試說(shuō)明HO平分∠BHG;(3)當(dāng)點(diǎn)E、F運(yùn)動(dòng)到如圖3所示的位置時(shí),其它條件不變,請(qǐng)將圖形補(bǔ)充完整,并直接寫出∠BHO的度數(shù).【答案】(1)①證明見(jiàn)解析;②AG⊥BE.理由見(jiàn)解析;(2)證明見(jiàn)解析;(3)∠BHO=45°.【解析】試題分析:(1)①根據(jù)正方形的性質(zhì)得DA=DC,∠ADB=∠CDB=45°,則可根據(jù)“SAS”證明△ADG≌△CDG,所以∠DAG=∠DCG;②根據(jù)正方形的性質(zhì)得AB=DC,∠BAD=∠CDA=90°,根據(jù)“SAS”證明△ABE≌△DCF,則∠ABE=∠DCF,由于∠DAG=∠DCG,所以∠DAG=∠ABE,然后利用∠DAG+∠BAG=90°得到∠ABE+∠BAG=90°,于是可判斷AG⊥BE;(2)如答圖1所示,過(guò)點(diǎn)O作OM⊥BE于點(diǎn)M,ON⊥AG于點(diǎn)N,證明△AON≌△BOM,可得四邊形OMHN為正方形,因此HO平分∠BHG結(jié)論成立;(3)如答圖2所示,與(1)同理,可以證明AG⊥BE;過(guò)點(diǎn)O作OM⊥BE于點(diǎn)M,ON⊥AG于點(diǎn)N,構(gòu)造全等三角形△AON≌△BOM,從而證明OMHN為正方形,所以HO平分∠BHG,即∠BHO=45°.試題解析:(1)①∵四邊形ABCD為正方形,∴DA=DC,∠ADB=∠CDB=45°,在△ADG和△CDG中,∴△ADG≌△CDG(SAS),∴∠DAG=∠DCG;②AG⊥BE.理由如下:∵四邊形ABCD為正方形,∴AB=DC,∠BAD=∠CDA=90°,在△ABE和△DCF中,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,∵∠DAG=∠DCG,∴∠DAG=∠ABE,∵∠DAG+∠BAG=90°,∴∠ABE+∠BAG=90°,∴∠AHB=90°,∴AG⊥BE;(2)由(1)可知AG⊥BE.如答圖1所示,過(guò)點(diǎn)O作OM⊥BE于點(diǎn)M,ON⊥AG于點(diǎn)N,則四邊形OMHN為矩形.∴∠MON=90°,又∵OA⊥OB,∴∠AON=∠BOM.∵∠AON+∠OAN=90°,∠BOM+∠OBM=90°,∴∠OAN=∠OBM.在△AON與△BOM中,∴△AON≌△BOM(AAS).∴OM=ON,∴矩形OMHN為正方形,∴HO平分∠BHG.(3)將圖形補(bǔ)充完整,如答圖2示,∠BHO=45°.與(1)同理,可以證明AG⊥BE.過(guò)點(diǎn)O作OM⊥BE于點(diǎn)M,ON⊥AG于點(diǎn)N,與(2)同理,可以證明△AON≌△BOM,可得OMHN為正方形,所以HO平分∠BHG,∴∠BHO=45°.考點(diǎn):1、四邊形綜合題;2、全等三角形的判定與性質(zhì);3、正方形的性質(zhì)4.如圖,△ABC是等邊三角形,AB=6cm,D為邊AB中點(diǎn).動(dòng)點(diǎn)P、Q在邊AB上同時(shí)從點(diǎn)D出發(fā),點(diǎn)P沿D→A以1cm/s的速度向終點(diǎn)A運(yùn)動(dòng).點(diǎn)Q沿D→B→D以2cm/s的速度運(yùn)動(dòng),回到點(diǎn)D停止.以PQ為邊在AB上方作等邊三角形PQN.將△PQN繞QN的中點(diǎn)旋轉(zhuǎn)180°得到△MNQ.設(shè)四邊形PQMN與△ABC重疊部分圖形的面積為S(cm2),點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s)(0<t<3).(1)當(dāng)點(diǎn)N落在邊BC上時(shí),求t的值.(2)當(dāng)點(diǎn)N到點(diǎn)A、B的距離相等時(shí),求t的值.(3)當(dāng)點(diǎn)Q沿D→B運(yùn)動(dòng)時(shí),求S與t之間的函數(shù)表達(dá)式.(4)設(shè)四邊形PQMN的邊MN、MQ與邊BC的交點(diǎn)分別是E、F,直接寫出四邊形PEMF與四邊形PQMN的面積比為2:3時(shí)t的值.【答案】(1)(2)2(3)S=S菱形PQMN=2S△PNQ=t2;(4)t=1或【解析】試題分析:(1)由題意知:當(dāng)點(diǎn)N落在邊BC上時(shí),點(diǎn)Q與點(diǎn)B重合,此時(shí)DQ=3;(2)當(dāng)點(diǎn)N到點(diǎn)A、B的距離相等時(shí),點(diǎn)N在邊AB的中線上,此時(shí)PD=DQ;(3)當(dāng)0≤t≤時(shí),四邊形PQMN與△ABC重疊部分圖形為四邊形PQMN;當(dāng)≤t≤時(shí),四邊形PQMN與△ABC重疊部分圖形為五邊形PQFEN.(4)MN、MQ與邊BC的有交點(diǎn)時(shí),此時(shí)<t<,列出四邊形PEMF與四邊形PQMN的面積表達(dá)式后,即可求出t的值.試題解析:(1)∵△PQN與△ABC都是等邊三角形,∴當(dāng)點(diǎn)N落在邊BC上時(shí),點(diǎn)Q與點(diǎn)B重合.∴DQ=3∴2t=3.∴t=;(2)∵當(dāng)點(diǎn)N到點(diǎn)A、B的距離相等時(shí),點(diǎn)N在邊AB的中線上,∴PD=DQ,當(dāng)0<t<時(shí),此時(shí),PD=t,DQ=2t∴t=2t∴t=0(不合題意,舍去),當(dāng)≤t<3時(shí),此時(shí),PD=t,DQ=6﹣2t∴t=6﹣2t,解得t=2;綜上所述,當(dāng)點(diǎn)N到點(diǎn)A、B的距離相等時(shí),t=2;(3)由題意知:此時(shí),PD=t,DQ=2t當(dāng)點(diǎn)M在BC邊上時(shí),∴MN=BQ∵PQ=MN=3t,BQ=3﹣2t∴3t=3﹣2t∴解得t=如圖①,當(dāng)0≤t≤時(shí),S△PNQ=PQ2=t2;∴S=S菱形PQMN=2S△PNQ=t2,如圖②,當(dāng)≤t≤時(shí),設(shè)MN、MQ與邊BC的交點(diǎn)分別是E、F,∵M(jìn)N=PQ=3t,NE=BQ=3﹣2t,∴ME=MN﹣NE=PQ﹣BQ=5t﹣3,∵△EMF是等邊三角形,∴S△EMF=ME2=(5t﹣3)2.;(4)MN、MQ與邊BC的交點(diǎn)分別是E、F,此時(shí)<t<,t=1或.考點(diǎn):幾何變換綜合題5.如圖,四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求證:四邊形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度數(shù).【答案】(1)見(jiàn)解析;(2)18°.【解析】【分析】(1)根據(jù)平行四邊形的判定得出四邊形ABCD是平行四邊形,求出∠ABC=90°,根據(jù)矩形的判定得出即可;(2)求出∠FDC的度數(shù),根據(jù)三角形內(nèi)角和定理求出∠DCO,根據(jù)矩形的性質(zhì)得出OD=OC,求出∠CDO,即可求出答案.【詳解】(1)證明:∵AO=CO,BO=DO∴四邊形ABCD是平行四邊形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四邊形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四邊形ABCD是矩形,∴OC=OD,∴∠ODC=54°∴∠BDF=∠ODC﹣∠FDC=18°.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)和判定,矩形的性質(zhì)和判定的應(yīng)用,能靈活運(yùn)用定理進(jìn)行推理是解此題的關(guān)鍵,注意:矩形的對(duì)角線相等,有一個(gè)角是直角的平行四邊形是矩形.6.已知AD是△ABC的中線P是線段AD上的一點(diǎn)(不與點(diǎn)A、D重合),連接PB、PC,E、F、G、H分別是AB、AC、PB、PC的中點(diǎn),AD與EF交于點(diǎn)M;(1)如圖1,當(dāng)AB=AC時(shí),求證:四邊形EGHF是矩形;(2)如圖2,當(dāng)點(diǎn)P與點(diǎn)M重合時(shí),在不添加任何輔助線的條件下,寫出所有與△BPE面積相等的三角形(不包括△BPE本身).【答案】(1)見(jiàn)解析;(2)△APE、△APF、△CPF、△PGH.【解析】【分析】(1)由三角形中位線定理得出EG∥AP,EF∥BC,EF=BC,GH∥BC,GH=BC,推出EF∥GH,EF=GH,證得四邊形EGHF是平行四邊形,證得EF⊥AP,推出EF⊥EG,即可得出結(jié)論;(2)由△APE與△BPE的底AE=BE,又等高,得出S△APE=S△BPE,由△APE與△APF的底EP=FP,又等高,得出S△APE=S△APF,由△APF與△CPF的底AF=CF,又等高,得出S△APF=S△CPF,證得△PGH底邊GH上的高等于△AEF底邊EF上高的一半,推出S△PGH=S△AEF=S△APF,即可得出結(jié)果.【詳解】(1)證明:∵E、F、G、H分別是AB、AC、PB、PC的中點(diǎn),∴EG∥AP,EF∥BC,EF=BC,GH∥BC,GH=BC,∴EF∥GH,EF=GH,∴四邊形EGHF是平行四邊形,∵AB=AC,∴AD⊥BC,∴EF⊥AP,∵EG∥AP,∴EF⊥EG,∴平行四邊形EGHF是矩形;(2)∵PE是△APB的中線,∴△APE與△BPE的底AE=BE,又等高,∴S△APE=S△BPE,∵AP是△AEF的中線,∴△APE與△APF的底EP=FP,又等高,∴S△APE=S△APF,∴S△APF=S△BPE,∵PF是△APC的中線,∴△APF與△CPF的底AF=CF,又等高,∴S△APF=S△CPF,∴S△CPF=S△BPE,∵EF∥GH∥BC,E、F、G、H分別是AB、AC、PB、PC的中點(diǎn),∴△AEF底邊EF上的高等于△ABC底邊BC上高的一半,△PGH底邊GH上的高等于△PBC底邊BC上高的一半,∴△PGH底邊GH上的高等于△AEF底邊EF上高的一半,∵GH=EF,∴S△PGH=S△AEF=S△APF,綜上所述,與△BPE面積相等的三角形為:△APE、△APF、△CPF、△PGH.【點(diǎn)睛】本題考查了矩形的判定與性質(zhì)、平行四邊形的判定、三角形中位線定理、平行線的性質(zhì)、三角形面積的計(jì)算等知識(shí),熟練掌握三角形中位線定理是解決問(wèn)題的關(guān)鍵.7.如圖所示,矩形ABCD中,點(diǎn)E在CB的延長(zhǎng)線上,使CE=AC,連接AE,點(diǎn)F是AE的中點(diǎn),連接BF、DF,求證:BF⊥DF.【答案】見(jiàn)解析.【解析】【分析】延長(zhǎng)BF,交DA的延長(zhǎng)線于點(diǎn)M,連接BD,進(jìn)而求證△AFM≌△EFB,得AM=BE,F(xiàn)B=FM,即可求得BC+BE=AD+AM,進(jìn)而求得BD=BM,根據(jù)等腰三角形三線合一的性質(zhì)即可求證BF⊥DF.【詳解】延長(zhǎng)BF,交DA的延長(zhǎng)線于點(diǎn)M,連接BD.∵四邊形ABCD是矩形,∴MD∥BC,∴∠AMF=∠EBF,∠E=∠MAF,又FA=FE,∴△AFM≌△EFB,∴AM=BE,F(xiàn)B=FM.∵矩形ABCD中,∴AC=BD,AD=BC,∴BC+BE=AD+AM,即CE=MD.∵CE=AC,∴AC=CE=BD=DM.∵FB=FM,∴BF⊥DF.【點(diǎn)睛】本題考查了矩形的性質(zhì),全等三角形的判定和對(duì)應(yīng)邊相等的性質(zhì),等腰三角形三線合一的性質(zhì),本題中求證DB=DM是解題的關(guān)鍵.8.已知,點(diǎn)是的角平分線上的任意一點(diǎn),現(xiàn)有一個(gè)直角繞點(diǎn)旋轉(zhuǎn),兩直角邊,分別與直線,相交于點(diǎn),點(diǎn).(1)如圖1,若,猜想線段,,之間的數(shù)量關(guān)系,并說(shuō)明理由.(2)如圖2,若點(diǎn)在射線上,且與不垂直,則(1)中的數(shù)量關(guān)系是否仍成立?如成立,請(qǐng)說(shuō)明理由;如不成立,請(qǐng)寫出線段,,之間的數(shù)量關(guān)系,并加以證明.(3)如圖3,若點(diǎn)在射線的反向延長(zhǎng)線上,且,,請(qǐng)直接寫出線段的長(zhǎng)度.【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析;(3)【解析】【分析】(1)先證四邊形為矩形,再證矩形為正方形,由正方形性質(zhì)可得;(2)過(guò)點(diǎn)作于點(diǎn),于點(diǎn),證四邊形為正方形,再證,可得;(3)根據(jù),可得.【詳解】解:(1)∵,,,∴四邊形為矩形.∵是的角平分線,∴,∴,∴矩形為正方形,∴,.∴.(2)如圖,過(guò)點(diǎn)作于點(diǎn),于點(diǎn),∵平分,,∴四邊形為正方形,由(1)得:,在和中,,∴,∴,∴.(3),,∴.∵,,∴,∴,∴,的長(zhǎng)度為.【點(diǎn)睛】考核知識(shí)點(diǎn):矩形,正方形的判定和性質(zhì).熟練運(yùn)用特殊四邊形的性質(zhì)和判定是關(guān)鍵.9.如圖①,在矩形中,點(diǎn)從邊的中點(diǎn)出發(fā),沿著速運(yùn)動(dòng),速度為每秒2個(gè)單位長(zhǎng)度,到達(dá)點(diǎn)后停止運(yùn)動(dòng),點(diǎn)是上的點(diǎn),,設(shè)的面積為,點(diǎn)運(yùn)動(dòng)的時(shí)間為秒,與的函數(shù)關(guān)系如圖②所示.(1)圖①中=,=,圖②中=.(2)當(dāng)=1秒時(shí),試判斷以為直徑的圓是否與邊相切?請(qǐng)說(shuō)明理由:(3)點(diǎn)在運(yùn)動(dòng)過(guò)程中,將矩形沿所在直線折疊,則為何值時(shí),折疊后頂點(diǎn)的對(duì)應(yīng)點(diǎn)落在矩形的一邊上.【答案】(1)8,18,20;(2)不相切,證明見(jiàn)解析;(3)t=、5、.【解析】【分析】(1)由題意得出AB=2BE,t=2時(shí),BE=2×2=4,求出AB=2BE=8,AE=BE=4,t=11時(shí),2t=22,得出BC=18,當(dāng)t=0時(shí),點(diǎn)P在E處,m=△AEQ的面積=AQ×AE=20即可;(2)當(dāng)t=1時(shí),PE=2,得出AP=AE+PE=6,由勾股定理求出PQ=2,設(shè)以PQ為直徑的圓的圓心為O',作O'N⊥BC于N,延長(zhǎng)NO'交AD于M,則MN=AB=8,O'M∥AB,MN=AB=8,由三角形中位線定理得出O'M=AP=3,求出O'N=MN-O'M=5<圓O'的半徑,即可得出結(jié)論;(3)分三種情況:①當(dāng)點(diǎn)P在AB邊上,A'落在BC邊上時(shí),作QF⊥BC于F,則QF=AB=8,BF=AQ=10,由折疊的性質(zhì)得:PA'=PA,A'Q=AQ=10,∠PA'Q=∠A=90°,由勾股定理求出A'F==6,得出A'B=BF-A'F=4,在Rt△A'BP中,BP=4-2t,PA'=AP=8-(4-2t)=4+2t,由勾股定理得出方程,解方程即可;②當(dāng)點(diǎn)P在BC邊上,A'落在BC邊上時(shí),由折疊的性質(zhì)得:A'P=AP,證出∠APQ=∠AQP,得出AP=AQ=A'P=10,在Rt△ABP中,由勾股定理求出BP=6,由BP=2t-4,得出2t-4=6,解方程即可;③當(dāng)點(diǎn)P在BC邊上,A'落在CD邊上時(shí),由折疊的性質(zhì)得:A'P=AP,A'Q=AQ=10,在Rt△DQA'中,DQ=AD-AQ=8,由勾股定理求出DA'=6,得出A'C=CD-DA'=2,在Rt△ABP和Rt△A'PC中,BP=2t-4,CP=BC-BP=22-2t,由勾股定理得出方程,解方程即可.【詳解】(1)∵點(diǎn)P從AB邊的中點(diǎn)E出發(fā),速度為每秒2個(gè)單位長(zhǎng)度,∴AB=2BE,由圖象得:t=2時(shí),BE=2×2=4,∴AB=2BE=8,AE=BE=4,t=11時(shí),2t=22,∴BC=22-4=18,當(dāng)t=0時(shí),點(diǎn)P在E處,m=△AEQ的面積=AQ×AE=×10×4=20;故答案為8,18,20;(2)當(dāng)t=1秒時(shí),以PQ為直徑的圓不與BC邊相切,理由如下:當(dāng)t=1時(shí),PE=2,∴AP=AE+PE=4+2=6,∵四邊形ABCD是矩形,∴∠A=90°,∴PQ=,設(shè)以PQ為直徑的圓的圓心為O',作O'N⊥BC于N,延長(zhǎng)NO'交AD于M,如圖1所示:則MN=AB=8,O'M∥AB,MN=AB=8,∵O'為PQ的中點(diǎn),∴O''M是△APQ的中位線,∴O'M=AP=3,∴O'N=MN-O'M=5<,∴以PQ為直徑的圓不與BC邊相切;(3)分三種情況:①當(dāng)點(diǎn)P在AB邊上,A'落在BC邊上時(shí),作QF⊥BC于F,如圖2所示:則QF=AB=8,BF=AQ=10,∵四邊形ABCD是矩形,∴∠A=∠B=∠BCD=∠D=90°,CD=AB=8,AD=BC=18,由折疊的性質(zhì)得:PA'=PA,A'Q=AQ=10,∠PA'Q=∠A=90°,∴A'F==6,∴A'B=BF-A'F=4,在Rt△A'BP中,BP=4-2t,PA'=AP=8-(4-2t)=4+2t,由勾股定理得:42+(4-2t)2=(4+2t)2,解得:t=;②當(dāng)點(diǎn)P在BC邊上,A'落在BC邊上時(shí),連接AA',如圖3所示:由折疊的性質(zhì)得:A'P=AP,∴∠APQ'=∠A'PQ,∵AD∥BC,∴∠AQP=∠A'PQ,∴∠APQ=∠AQP,∴AP=AQ=A'P=10,在Rt△ABP中,由勾股定理得:BP==6,又∵BP=2t-4,∴2t-4=6,解得:t=5;③當(dāng)點(diǎn)P在BC邊上,A'落在CD邊上時(shí),連接AP、A'P,如圖4所示:由折疊的性質(zhì)得:A'P=AP,A'Q=AQ=10,在Rt△DQA'中,DQ=AD-AQ=8,由勾股定理得:DA'==6,∴A'C=CD-DA'=2,在Rt△ABP和Rt△A'PC中,BP=2t-4,CP=BC-BP=18-(2t-4)=22-2t,由勾股定理得:AP2=82+(2t-4)2,A'P2=22+(22-2t)2,∴82+(2t-4)2=22+(22-2t)2,解得:t=;綜上所述,t為或5或時(shí),折疊后頂點(diǎn)A的對(duì)應(yīng)點(diǎn)A′落在矩形的一邊上.【點(diǎn)睛】四邊形綜合題目,考查了矩形的性質(zhì)、折疊變換的性質(zhì)、勾股定理、函數(shù)圖象、直線與圓的位置關(guān)系、三角形中位線定理、等腰三角形的判定、以及分類討論等知識(shí).10.在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(﹣6,0)、點(diǎn)C(0,6),若正方形OABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),得正方形OA′B′C′,記旋轉(zhuǎn)角為α:(1)如圖①,當(dāng)α=45°時(shí),求BC與A′B′的交點(diǎn)D的坐標(biāo);(2)如圖②,當(dāng)α=60°時(shí),求點(diǎn)B′的坐標(biāo);(3)若P為線段BC′的中點(diǎn),求AP長(zhǎng)的取值范圍(直接寫出結(jié)果即可).【答案】(1);(2);(3).【解析】【分析】(1)當(dāng)α=45°時(shí),延長(zhǎng)OA′經(jīng)過(guò)點(diǎn)B,在Rt△BA′D中,∠OBC=45°,A′B=,可求得BD的長(zhǎng),進(jìn)而求得CD的長(zhǎng),即可得出點(diǎn)D的坐標(biāo);(2)過(guò)點(diǎn)C′作x軸垂線MN,交x軸于點(diǎn)M,過(guò)點(diǎn)B′作MN的垂線,垂足為N,證明△OMC′≌△C′NB′,可得C′N=OM=,B′N=C′M=3,即可得出點(diǎn)B′的坐標(biāo);(3)連接OB,AC相交于點(diǎn)K,則K是OB的中點(diǎn),因?yàn)镻為線段BC′的中點(diǎn),所以PK=OC′=3,即點(diǎn)P在以K為圓心,3為半徑的圓上運(yùn)動(dòng),即可得出AP長(zhǎng)的取值范圍.【詳解】解:(1)∵A(﹣6,0)、C(0,6),O(0,0),∴四邊形OABC是邊長(zhǎng)為6的正方形,當(dāng)α=45°時(shí),如圖①,延長(zhǎng)OA′經(jīng)過(guò)點(diǎn)B,∵OB=6,OA′=OA=6,∠OBC=45°,∴A′B=,∴BD=()×,∴CD=6﹣()=,∴BC與A′B′的交點(diǎn)D的坐標(biāo)為(,6);(2)如圖②,過(guò)點(diǎn)C′作x軸垂線MN,交x軸于點(diǎn)M,過(guò)點(diǎn)B′作MN的垂線,垂足為N,∵∠OC′B′=90°,∴∠OC′M=90°﹣∠B′C′N=∠C′B′N,∵OC′=B′C′,∠OMC′=∠C′NB′=90°,∴△OMC′≌△C′NB′(AAS),當(dāng)α=60°時(shí),∵∠A′OC′=90°,OC′=6,∴∠C′OM=30°,∴C′N=OM=,B′N=C′M=3,∴點(diǎn)B′的坐標(biāo)為;(3)如圖③,連接OB,AC相交于點(diǎn)K,則K是OB的中點(diǎn),∵P為線段BC′的中點(diǎn),∴PK=OC′=3,∴P在以K為圓心,3為半徑的圓上運(yùn)動(dòng),∵AK=3,∴AP最大值為,AP的最小值為,∴AP長(zhǎng)的取值范圍為.【點(diǎn)睛】本題考查正方形性質(zhì),全等三角形判定與性質(zhì),三角形中位線定理.(3)問(wèn)解題的關(guān)鍵是利用中位線定理得出點(diǎn)P的軌跡.11.(1)問(wèn)題發(fā)現(xiàn)如圖1,點(diǎn)E.
F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF、則EF=BE+DF,試說(shuō)明理由;(2)類比引申如圖2,在四邊形ABCD中,AB=AD,∠BAD=90°,點(diǎn)E.
F分別在邊BC、CD上,∠EAF=45°,若∠B,∠D都不是直角,則當(dāng)∠B與∠D滿足等量關(guān)系時(shí),仍有EF=BE+DF;(3)聯(lián)想拓展如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E均在邊BC上,且∠DAE=45°,猜想BD、DE、EC滿足的等量關(guān)系,并寫出推理過(guò)程?!敬鸢浮浚?)詳見(jiàn)解析;(2)詳見(jiàn)解析;(3)詳見(jiàn)解析.【解析】試題分析:(1)把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,證出△AFG≌△AFE,根據(jù)全等三角形的性質(zhì)得出EF=FG,即可得出答案;(2)把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,證出△AFE≌△AFG,根據(jù)全等三角形的性質(zhì)得出EF=FG,即可得出答案;(3)把△ACE旋轉(zhuǎn)到ABF的位置,連接DF,證明△AFE≌△AFG(SAS),則EF=FG,∠C=∠ABF=45°,△BDF是直角三角形,根據(jù)勾股定理即可作出判斷.試題解析:(1)理由是:如圖1,∵AB=AD,∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,如圖1,∵∠ADC=∠B=90°,∴∠FDG=180°,點(diǎn)F.D.G共線,則∠DAG=∠BAE,AE=AG,∠FAG=∠FAD+∠GAD=∠FAD+∠BAE=90°?45°=45°=∠EAF,即∠EAF=∠FAG,在△EAF和△GAF中,AF=AF,∠EAF=∠GAF,AE=AG,∴△AFG≌△AFE(SAS),∴EF=FG=BE+DF;(2)∠B+∠D=180°時(shí),EF=BE+DF;∵AB=AD,∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,如圖2,∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠FAG,∵∠ADC+∠B=180°,∴∠FDG=180°,點(diǎn)F.D.G共線,在△AFE和△AFG中,AE=AG,∠FAE=∠FAG,AF=AF,∴△AFE≌△AFG(SAS),∴EF=FG,即:EF=BE+DF,故答案為:∠B+∠ADC=180°;(3)BD2+CE2=DE2.理由是:把△ACE旋轉(zhuǎn)到ABF的位置,連接DF,則∠FAB=∠CAE.∵∠BAC=90°,∠DAE=45°,∴∠BAD+∠CAE=45°,又∵∠FAB=∠CAE,∴∠FAD=∠DAE=45°,則在△ADF和△ADE中,AD=AD,∠FAD=∠DAE,AF=AE,∴△ADF≌△ADE,∴DF=DE,∠C=∠ABF=45°,∴∠BDF=90°,∴△BDF是直角三角形,∴BD2+BF2=DF2,∴BD2+CE2=DE2.12.如圖,在矩形ABCD中,點(diǎn)E在邊CD上,將該矩形沿AE折疊,使點(diǎn)D落在邊BC上的點(diǎn)F處,過(guò)點(diǎn)F作FG∥CD,交AE于點(diǎn)G,連接DG.(1)求證:四邊形DEFG為菱形;(2)若CD=8,CF=4,求的值.【答案】(1)證明見(jiàn)試題解析;(2).【解析】試題分析:(1)由折疊的性質(zhì),可以得到DG=FG,ED=EF,∠1=∠2,由FG∥CD,可得∠1=∠3,再證明FG=FE,即可得到四邊形DEFG為菱形;(2)在Rt△EFC中,用勾股定理列方程即可CD、CE,從而求出的值.試題解析:(1)由折疊的性質(zhì)可知:DG=FG,ED=EF,∠1=∠2,∵FG∥CD,∴∠2=∠3,∴FG=FE,∴DG=GF=EF=DE,∴四邊形DEFG為菱形;(2)設(shè)DE=x,根據(jù)折疊的性質(zhì),EF=DE=x,EC=8﹣x,在Rt△EFC中,,即,解得:x=5,CE=8﹣x=3,∴=.考點(diǎn):1.翻折變換(折疊問(wèn)題);2.勾股定理;3.菱形的判定與性質(zhì);4.矩形的性質(zhì);5.綜合題.13.如圖,在菱形ABCD中,AB=6,∠ABC=60°,AH⊥BC于點(diǎn)H.動(dòng)點(diǎn)E從點(diǎn)B出發(fā),沿線段BC向點(diǎn)C以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng).過(guò)點(diǎn)E作EF⊥AB,垂足為點(diǎn)F.點(diǎn)E出發(fā)后,以EF為邊向上作等邊三角形EFG,設(shè)點(diǎn)E的運(yùn)動(dòng)時(shí)間為t秒,△EFG和△AHC的重合部分面積為S.(1)CE=(含t的代數(shù)式表示).(2)求點(diǎn)G落在線段AC上時(shí)t的值.(3)當(dāng)S>0時(shí),求S與t之間的函數(shù)關(guān)系式.(4)點(diǎn)P在點(diǎn)E出發(fā)的同時(shí)從點(diǎn)A出發(fā)沿A-H-A以每秒2個(gè)單位長(zhǎng)度的速度作往復(fù)運(yùn)動(dòng),當(dāng)點(diǎn)E停止運(yùn)動(dòng)時(shí),點(diǎn)P隨之停止運(yùn)動(dòng),直接寫出點(diǎn)P在△EFG內(nèi)部時(shí)t的取值范圍.【答案】(1)6-2t;(2)t=2;(3)當(dāng)<t≤2時(shí),S=t2+t-3;當(dāng)2<t≤3時(shí),S=-t2+t-;(4)<t<.【解析】試題分析:(1)由菱形的性質(zhì)得出BC=AB=6得出CE=BC-BE=6-2t即可;(2)由菱形的性質(zhì)和已知條件得出△ABC是等邊三角形,得出∠ACB=60°,由等邊三角形的性質(zhì)和三角函數(shù)得出∠GEF=60°,GE=EF=BE?sin60°=t,證出∠GEC=90°,由三角函數(shù)求出CE==t,由BE+CE=BC得出方程,解方程即可;(3)分兩種情況:①當(dāng)<t≤2時(shí),S=△EFG的面積-△NFN的面積,即可得出結(jié)果;②當(dāng)2<t≤3時(shí),由①的結(jié)果容易得出結(jié)論;(4)由題意得出t=時(shí),點(diǎn)P與H重合,E與H重合,得出點(diǎn)P在△EFG內(nèi)部時(shí),t的不等式,解不等式即可.試題解析:(1)根據(jù)題意得:BE=2t,∵四邊形ABCD是菱形,∴BC=AB=6,∴CE=BC-BE=6-2t;(2)點(diǎn)G落在線段AC上時(shí),如圖1所示:∵四邊形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等邊三角形,∴∠ACB=60°,∵△EFG是等邊三角形,∴∠GEF=60°,GE=EF=BE?sin60°=t,∵EF⊥AB,∴∠BEF=90°-60°=30°,∴∠GEB=90°,∴∠GEC=90°,∴CE==t,∵BE+CE=BC,∴2t+t=6,解得:t=2;(3)分兩種情況:①當(dāng)<t≤2時(shí),如圖2所示:S=△EFG的面積-△NFN的面積=××(t)2-××(-+2)2=t2+t-3,即S=t2+t-3;當(dāng)2<t≤3時(shí),如圖3所示:S=t2+t-3-(3t-6)2,即S=-t2+t-;(4)∵AH=AB?sin60°=6×=3,3÷2=,3÷2=,∴t=時(shí),點(diǎn)P與H重合,E與H重合,∴點(diǎn)P在△EFG內(nèi)部時(shí),
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025四川成都交通投資集團(tuán)有限公司春季校園招聘10人筆試參考題庫(kù)附帶答案詳解
- 日照職業(yè)技術(shù)學(xué)院《醫(yī)用電子學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 安徽工貿(mào)職業(yè)技術(shù)學(xué)院《工程結(jié)構(gòu)抗震A》2023-2024學(xué)年第二學(xué)期期末試卷
- 貴州經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院《顯微構(gòu)造地質(zhì)學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 萍鄉(xiāng)學(xué)院《ORACE數(shù)據(jù)庫(kù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 集寧師范學(xué)院《nternet協(xié)議分析A(實(shí)驗(yàn))》2023-2024學(xué)年第二學(xué)期期末試卷
- 沈陽(yáng)城市建設(shè)學(xué)院《劇本創(chuàng)作》2023-2024學(xué)年第二學(xué)期期末試卷
- 青島職業(yè)技術(shù)學(xué)院《教育基礎(chǔ)理論理工》2023-2024學(xué)年第二學(xué)期期末試卷
- 和君職業(yè)學(xué)院《資源循環(huán)科學(xué)與工程概論》2023-2024學(xué)年第二學(xué)期期末試卷
- 上海民遠(yuǎn)職業(yè)技術(shù)學(xué)院《專業(yè)導(dǎo)論(人工智能)》2023-2024學(xué)年第二學(xué)期期末試卷
- 上市公司執(zhí)行企業(yè)會(huì)計(jì)準(zhǔn)則案例解析
- 路燈安裝施工組織設(shè)計(jì)方案
- 蓋房四鄰簽字協(xié)議書(shū)范文
- 超聲考試題+參考答案
- 《飛向太空的航程》名師課件
- 《飛越瘋?cè)嗽骸冯娪百p析
- 《建筑結(jié)構(gòu)抗震設(shè)計(jì)》全套課件
- 農(nóng)業(yè)綜合執(zhí)法大比武測(cè)試題
- 2024年高考?xì)v史復(fù)習(xí)試題匯編:材料分析題匯編(中國(guó)史+世界史)(教師卷)
- 廠區(qū)圍墻翻新施工方案
- 山東省青島市2024年小升初語(yǔ)文真題試卷及答案
評(píng)論
0/150
提交評(píng)論