版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
四川省成都經(jīng)濟(jì)技術(shù)開發(fā)區(qū)實(shí)驗(yàn)中學(xué)校2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.雙曲線的焦點(diǎn)到漸近線的距離為()A. B.C. D.2.若且,則下列不等式中一定成立的是()A. B.C. D.3.已知O為坐標(biāo)原點(diǎn),,點(diǎn)P是上一點(diǎn),則當(dāng)取得最小值時(shí),點(diǎn)P的坐標(biāo)為()A. B.C. D.4.已知數(shù)列滿足,,在()A.25 B.30C.32 D.645.復(fù)數(shù)的虛部為()A. B.C. D.6.若將一個(gè)橢圓繞其中心旋轉(zhuǎn)90°,所得橢圓短軸兩頂點(diǎn)恰好是旋轉(zhuǎn)前橢圓的兩焦點(diǎn),這樣的橢圓稱為“對(duì)偶橢圓”,下列橢圓中是“對(duì)偶橢圓”的是()A. B.C. D.7.直線的一個(gè)法向量為()A. B.C. D.8.已知命題p:,,則()A., B.,C., D.,9.如圖甲是第七屆國(guó)際數(shù)學(xué)家大會(huì)(簡(jiǎn)稱ICME—7)的會(huì)徽?qǐng)D案,其主體圖案是由圖乙的一連串直角三角形演化而成的.已知,,,,為直角頂點(diǎn),設(shè)這些直角三角形的周長(zhǎng)從小到大組成的數(shù)列為,令,為數(shù)列的前項(xiàng)和,則()A.8 B.9C.10 D.1110.設(shè)雙曲線的左、右頂點(diǎn)分別為、,點(diǎn)在雙曲線上第一象限內(nèi)的點(diǎn),若的三個(gè)內(nèi)角分別為、、且,則雙曲線的漸近線方程為()A. B.C. D.11.過(guò)點(diǎn)且斜率為的直線方程為()A. B.C. D.12.已知平面的一個(gè)法向量為=(2,-2,4),=(-1,1,-2),則AB所在直線l與平面的位置關(guān)系為()A.l⊥ B.C.l與相交但不垂直 D.l∥二、填空題:本題共4小題,每小題5分,共20分。13.已知矩形的長(zhǎng)為2,寬為1,以該矩形的邊所在直線為軸旋轉(zhuǎn)一周得到的幾何體的表面積為___________.14.設(shè)函數(shù)為奇函數(shù),當(dāng)時(shí),,則_______15.古希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個(gè)定點(diǎn)A、B的距離之比為定值(且)的點(diǎn)的軌跡是圓”.后來(lái)人們將這個(gè)圓以他的名字命名,稱為阿波羅尼斯圓,簡(jiǎn)稱阿氏圓,在平面直角坐標(biāo)系中,,,點(diǎn)滿足,則點(diǎn)P的軌跡方程為__________.(答案寫成標(biāo)準(zhǔn)方程),的最小值為___________.16.已知等比數(shù)列的前項(xiàng)和為,若,,則______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在中,(1)求的大小;(2)若,.求的面積18.(12分)如圖,已知雙曲線,過(guò)向雙曲線作兩條切線,切點(diǎn)分別為,,且.(1)證明:直線的方程為.(2)設(shè)為雙曲線的左焦點(diǎn),證明:.19.(12分)阿基米德(公元前年—公元前年)不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸與短半軸的乘積.已知平面直角坐標(biāo)系中,橢圓:的面積為,兩焦點(diǎn)與短軸的一個(gè)頂點(diǎn)構(gòu)成等邊三角形.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)的直線與交于不同的兩點(diǎn),求面積的最大值.20.(12分)已知公差不為零的等差數(shù)列的前項(xiàng)和為,,且,,成等比數(shù)列(1)求的通項(xiàng)公式;(2)記,求數(shù)列的前項(xiàng)和21.(12分)設(shè)數(shù)列的前項(xiàng)和為,,且滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)證明:對(duì)一切正整數(shù),有.22.(10分)公差不為0的等差數(shù)列中,,且成等比數(shù)列(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),數(shù)列的前n項(xiàng)和為.若,求的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)題意,由雙曲線的標(biāo)準(zhǔn)方程可得雙曲線的焦點(diǎn)坐標(biāo)以及漸近線方程,由點(diǎn)到直線的距離公式計(jì)算可得答案.【詳解】解:根據(jù)題意,雙曲線的方程為,其焦點(diǎn)坐標(biāo)為,其漸近線方程為,即,則其焦點(diǎn)到漸近線的距離;故選D.【點(diǎn)睛】本題考查雙曲線的幾何性質(zhì),關(guān)鍵是求出雙曲線的漸近線與焦點(diǎn)坐標(biāo).2、D【解析】根據(jù)不等式的性質(zhì)即可判斷.【詳解】對(duì)于A,若,則不等式不成立;對(duì)于B,若,則不等式不成立;對(duì)于C,若均為負(fù)值,則不等式不成立;對(duì)于D,不等號(hào)的兩邊同乘負(fù)值,不等號(hào)的方向改變,故正確;故選:D【點(diǎn)睛】本題主要考查不等式的性質(zhì),需熟練掌握性質(zhì),屬于基礎(chǔ)題.3、A【解析】根據(jù)三點(diǎn)共線,可得,然后利用向量的減法坐標(biāo)運(yùn)算,分別求得,最后計(jì)算,經(jīng)過(guò)化簡(jiǎn)觀察,可得結(jié)果.【詳解】設(shè),則則∴當(dāng)時(shí),取最小值為-10,此時(shí)點(diǎn)P的坐標(biāo)為.故選:A【點(diǎn)睛】本題主要考查向量數(shù)量積的坐標(biāo)運(yùn)算,難點(diǎn)在于三點(diǎn)共線,審清題干,簡(jiǎn)單計(jì)算,屬基礎(chǔ)題.4、A【解析】根據(jù)題中條件,得出數(shù)列公差,進(jìn)而可求出結(jié)果.【詳解】由得,所以數(shù)列是以為公差的等差數(shù)列,又,所以.故選:A.【點(diǎn)睛】本題主要考查等差數(shù)列的基本量運(yùn)算,屬于基礎(chǔ)題型.5、D【解析】直接根據(jù).復(fù)數(shù)的乘法運(yùn)算結(jié)合復(fù)數(shù)虛部的定義即可得出答案【詳解】解:,所以復(fù)數(shù)的虛部為.故選:D.6、A【解析】由題意可得,所給的橢圓中的,的值求出的值,進(jìn)而判斷所給命題的真假【詳解】解:因?yàn)闄E圓短的軸兩頂點(diǎn)恰好是旋轉(zhuǎn)前橢圓的兩焦點(diǎn),即,即,中,,,所以,故,所以正確;中,,,所以,所以不正確;中,,,所以,所以不正確;中,,,所以,所以不正確;故選:7、B【解析】直線化為,求出直線的方向向量,因?yàn)榉ㄏ蛄颗c方向向量垂直,逐項(xiàng)驗(yàn)證可得答案.【詳解】直線的方向向量為,化為,直線的方向向量為,因?yàn)榉ㄏ蛄颗c方向向量垂直,設(shè)法向量為,所以,由于,A錯(cuò)誤;,故B正確;,故C錯(cuò)誤;,故D錯(cuò)誤;故選:B.8、C【解析】由全稱命題的否定:將任意改存在并否定結(jié)論,即可寫出原命題p的否定.【詳解】由全稱命題的否定為特稱命題,∴是“,”.故選:C.9、B【解析】由題意可得的邊長(zhǎng),進(jìn)而可得周長(zhǎng)及,進(jìn)而可得,可得解.【詳解】由,可得,,,,所以,,所以前項(xiàng)和,所以,故選:B.10、B【解析】設(shè)點(diǎn),其中,,求得,且有,,利用兩角和的正切公式可求得的值,進(jìn)而可求得的值,即可得出該雙曲線的漸近線的方程.【詳解】易知點(diǎn)、,設(shè)點(diǎn),其中,,且,,且,,,所以,,,因?yàn)?,所以,,則,因此,該雙曲線漸近線方程為.故選:B.11、B【解析】利用點(diǎn)斜式可得出所求直線的方程.【詳解】由題意可知所求直線的方程為,即.故選:B.12、A【解析】由向量與平面法向量的關(guān)系判斷直線與平面的位置關(guān)系【詳解】因?yàn)?,所以,所以故選:A二、填空題:本題共4小題,每小題5分,共20分。13、或##或【解析】分兩種情況進(jìn)行解答,①以邊長(zhǎng)為2的邊為軸旋轉(zhuǎn),②以邊長(zhǎng)為1的邊為軸旋轉(zhuǎn).進(jìn)行解答即可【詳解】解:①以邊長(zhǎng)為2的邊為軸旋轉(zhuǎn),表面積兩個(gè)底面積側(cè)面積,即:,②以邊長(zhǎng)為1的邊為軸旋轉(zhuǎn),表面積兩個(gè)底面積側(cè)面積,即:,故答案為:或14、【解析】由奇函數(shù)的定義可得,代入解析式即可得解.【詳解】函數(shù)為奇函數(shù),當(dāng)時(shí),,所以.故答案為-1.【點(diǎn)睛】本題主要考查了奇函數(shù)的求值問(wèn)題,屬于基礎(chǔ)題.15、①.②.【解析】設(shè)點(diǎn)P坐標(biāo),然后用直接法可求;根據(jù)軌跡方程和數(shù)量積的坐標(biāo)表示對(duì)化簡(jiǎn),結(jié)合軌跡方程可得x的范圍,然后可解.【詳解】設(shè)P點(diǎn)坐標(biāo)為,則由,得,化簡(jiǎn)得,即.因?yàn)?,所以因?yàn)辄c(diǎn)P在圓上,故所以,故的最小值為.故答案為:,16、【解析】設(shè)等比數(shù)列的公比為,根據(jù)已知條件求出的值,由此可得出的值.【詳解】設(shè)等比數(shù)列的公比為,則,整理可得,,解得,因此,.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)利用正弦定理將邊化角,再根據(jù)兩角和的正弦公式及誘導(dǎo)公式得到,即可得解;(2)首先由余弦定理求出,即可得到,再根據(jù)面積公式計(jì)算可得;【小問(wèn)1詳解】解:因?yàn)?,由正弦定理可得,即,又在中,,所以,,所以;【小?wèn)2詳解】解:由余弦定理得,即,解得,所以,又,所以;.18、(1)證明見(jiàn)解析(2)證明見(jiàn)解析【解析】(1)設(shè)出切線方程,聯(lián)立后用韋達(dá)定理及根的判別式進(jìn)行表達(dá)出A的橫坐標(biāo)與縱坐標(biāo),進(jìn)而表達(dá)出直線的方程,化簡(jiǎn)即為結(jié)果;(2)再第一問(wèn)的基礎(chǔ)上,利用向量的夾角公式表達(dá)出夾角的余弦值,進(jìn)而證明出結(jié)論.【小問(wèn)1詳解】顯然直線的斜率存在,設(shè)直線的方程為,聯(lián)立得,則,化簡(jiǎn)得.因?yàn)榉匠逃袃蓚€(gè)相等實(shí)根,故切點(diǎn)A的橫坐標(biāo),得,則,故,則,即.【小問(wèn)2詳解】同理可得,又與均過(guò),所以.故,,,又因?yàn)椋?,則,,故,故.【點(diǎn)睛】圓錐曲線中證明角度相關(guān)的問(wèn)題,往往需要轉(zhuǎn)化為斜率或向量進(jìn)行求解.19、(1);(2).【解析】(1)根據(jù)題意計(jì)算得到,得到橢圓方程.(2)設(shè)直線的方程為,聯(lián)立方程,根據(jù)韋達(dá)定理得到,,表示出,解得答案.【詳解】(1)依題意有解得所以橢圓的標(biāo)準(zhǔn)方程是.(2)由題意直線的斜率不能為,設(shè)直線的方程為,由方程組得,設(shè),,所以,,所以,所以,令(),則,,因?yàn)樵谏蠁握{(diào)遞增,所以當(dāng),即時(shí),面積取得最大值為.【點(diǎn)睛】本題考查了橢圓方程,橢圓內(nèi)三角形面積的最值問(wèn)題,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.20、(1)(2)【解析】(1)設(shè)數(shù)列的公差為,由,且,,,利用“”法求解;(2)由,利用裂項(xiàng)相消法求解.【小問(wèn)1詳解】解:,,設(shè)數(shù)列的公差為,則,,,由題知,整理得,解得,(舍去),,則.【小問(wèn)2詳解】,則=.21、(1),;(2)證明見(jiàn)解析.【解析】(1)利用關(guān)系可得,根據(jù)等比數(shù)列的定義易知為等比數(shù)列,進(jìn)而寫出的通項(xiàng)公式;(2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 專用設(shè)備的結(jié)構(gòu)強(qiáng)度分析考核試卷
- 2025-2030全球汽車引擎蓋和后備箱釋放電纜行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025年全球及中國(guó)受控環(huán)境室和房間行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 2025年全球及中國(guó)自主挖掘機(jī)行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 自然美術(shù)課程設(shè)計(jì)
- 認(rèn)識(shí)地圖課程設(shè)計(jì)
- 老路改造課程設(shè)計(jì)
- 粘土三明治課程設(shè)計(jì)
- 課程設(shè)計(jì)等高線的確定
- 領(lǐng)導(dǎo)能力提升課程設(shè)計(jì)
- 2024年醫(yī)師定期考核臨床業(yè)務(wù)知識(shí)考試題庫(kù)及答案(共三套)
- 2014新PEP小學(xué)英語(yǔ)六年級(jí)上冊(cè)-Unit5-What-does-he-do復(fù)習(xí)課件
- 建筑材料供應(yīng)鏈管理服務(wù)合同
- 孩子改名字父母一方委托書
- 2024-2025學(xué)年人教版初中物理九年級(jí)全一冊(cè)《電與磁》單元測(cè)試卷(原卷版)
- 江蘇單招英語(yǔ)考綱詞匯
- 2024年事業(yè)單位財(cái)務(wù)工作計(jì)劃例文(6篇)
- 2024年工程咨詢服務(wù)承諾書
- 青桔單車保險(xiǎn)合同條例
- 車輛使用不過(guò)戶免責(zé)協(xié)議書范文范本
- 2023-2024學(xué)年天津市部分區(qū)九年級(jí)(上)期末物理試卷
評(píng)論
0/150
提交評(píng)論