上海市華東師范大學附屬第二中學2023-2024學年高二上數(shù)學期末經(jīng)典試題含解析_第1頁
上海市華東師范大學附屬第二中學2023-2024學年高二上數(shù)學期末經(jīng)典試題含解析_第2頁
上海市華東師范大學附屬第二中學2023-2024學年高二上數(shù)學期末經(jīng)典試題含解析_第3頁
上海市華東師范大學附屬第二中學2023-2024學年高二上數(shù)學期末經(jīng)典試題含解析_第4頁
上海市華東師范大學附屬第二中學2023-2024學年高二上數(shù)學期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

上海市華東師范大學附屬第二中學2023-2024學年高二上數(shù)學期末經(jīng)典試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.曲線與曲線的()A.長軸長相等 B.短軸長相等C.離心率相等 D.焦距相等2.我國古代銅錢蘊含了“外圓內(nèi)方”“天地合一”的思想.現(xiàn)有一銅錢如圖,其中圓的半徑為r,正方形的邊長為,若在圓內(nèi)隨即取點,取自陰影部分的概率是p,則圓周率的值為()A. B.C. D.3.若數(shù)列滿足,則()A.2 B.6C.12 D.204.已知直線和平面,且在上,不在上,則下列判斷錯誤的是()A.若,則存在無數(shù)條直線,使得B.若,則存在無數(shù)條直線,使得C.若存在無數(shù)條直線,使得,則D.若存在無數(shù)條直線,使得,則5.已知等比數(shù)列的前項和為,若,,則()A.20 B.30C.40 D.506.橢圓上的點P到直線x+2y-9=0的最短距離為()A. B.C. D.7.過點且與拋物線只有一個公共點的直線有()A.1條 B.2條C.3條 D.0條8.數(shù)列中,,,若,則()A.2 B.3C.4 D.59.已知圓和圓恰有三條公共切線,則的最小值為()A.6 B.36C.10 D.10.若函數(shù)在上為單調(diào)減函數(shù),則的取值范圍()A. B.C. D.11.《米老鼠和唐老鴨》這部動畫給我們的童年帶來了許多美好的回憶,令我們印象深刻.如圖所示,有人用3個圓構(gòu)成米奇的簡筆畫形象.已知3個圓方程分別為:圓圓,圓若過原點的直線與圓、均相切,則截圓所得的弦長為()A. B.C. D.12.“”是“方程表示雙曲線”的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知、是橢圓()長軸的兩個端點,、是橢圓上關(guān)于軸對稱的兩點,直線,的斜率分別為,().若橢圓的離心率為,則的最小值為______14.若=,則x的值為_______15.千年一遇對稱日,萬事圓滿在今朝,年月日又是一個難得的“世界完全對稱日”(公歷紀年日期中數(shù)字左右完全對稱的日期).數(shù)學上把這樣的對稱自然數(shù)叫回文數(shù),兩位數(shù)的回文數(shù)共有個(),其中末位是奇數(shù)的又叫做回文奇數(shù),則在內(nèi)的回文奇數(shù)的個數(shù)為___16.分別過橢圓的左、右焦點、作兩條互相垂直的直線、,它們的交點在橢圓的內(nèi)部,則橢圓的離心率的取值范圍是________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某項目的建設(shè)過程中,發(fā)現(xiàn)其補貼額x(單位:百萬元)與該項目的經(jīng)濟回報y(單位:千萬元)之間存在著線性相關(guān)關(guān)系,統(tǒng)計數(shù)據(jù)如下表:補貼額x(單位:百萬元)23456經(jīng)濟回報y(單位:千萬元)2.5344.56(1)請根據(jù)上表所給的數(shù)據(jù),求出y關(guān)于x的線性回歸直線方程;(2)為高質(zhì)量完成該項目,決定對負責該項目的7名工程師進行考核.考核結(jié)果為4人優(yōu)秀,3人合格.現(xiàn)從這7名工程師中隨機抽取3人,用X表示抽取的3人中考核優(yōu)秀的人數(shù),求隨機變量X的分布列與期望.參考公式:18.(12分)已知橢圓過點,且離心率為.(1)求橢圓的方程;(2)過作斜率分別為的兩條直線,分別交橢圓于點,且,證明:直線過定點.19.(12分)已知函數(shù)在處有極值,且其圖象經(jīng)過點.(1)求的解析式;(2)求在的最值.20.(12分)如圖,在四棱錐中,底面ABCD為矩形,側(cè)面PAD是正三角形,平面平面ABCD,M是PD的中點(1)證明:平面PCD;(2)若PB與底面ABCD所成角的正切值為,求二面角的正弦值21.(12分)在如圖所示的幾何體中,四邊形ABCD為正方形,平面ABCD,,,.(1)求證:平面PAD;(2)求直線AB與平面PCE所成角的正弦值;22.(10分)如圖,四棱錐中,平面,∥,,,為上一點,平面(Ⅰ)求證:∥平面;(Ⅱ)若,求點D到平面EMC的距離

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】分別求出兩曲線表示的橢圓的位置,長軸長、短軸長、離心率和焦距,比較可得答案.【詳解】曲線表示焦點在x軸上的橢圓,長軸長為10,短軸長為6,離心率為,焦距為8,曲線焦點在x軸上的橢圓,長軸長為,短軸長為,離心率為,焦距為,故選:D2、B【解析】根據(jù)圓和正方形的面積公式結(jié)合幾何概型概率公式求解即可.【詳解】由可得故選:B3、D【解析】由已知條件變形可得,然后累乘法可得,即可求出詳解】由得,,.故選:D4、D【解析】根據(jù)直線和直線,直線和平面的位置關(guān)系依次判斷每一個選項得到答案.【詳解】若,則平行于過的平面與的交線,當時,,則存在無數(shù)條直線,使得,A正確;若,垂直于平面中的所有直線,則存在無數(shù)條直線,使得,B正確;若存在無數(shù)條直線,使得,,,則,C正確;當時,存在無數(shù)條直線,使得,D錯誤.故選:D.5、B【解析】根據(jù)等比數(shù)列前項和的性質(zhì)進行求解即可.【詳解】因為是等比數(shù)列,所以成等比數(shù)列,即成等比數(shù)列,顯然,故選:B6、A【解析】與已知直線平行,與橢圓相切的直線有二條,一條距離最短,一條距離最長,利用相切,求出直線的常數(shù)項,再計算平行線間的距離即可.【詳解】設(shè)與已知直線平行,與橢圓相切的直線為,則所以所以橢圓上點P到直線的最短距離為故選:A7、B【解析】過的直線的斜率存在和不存在兩種情況分別討論即可得出答案.【詳解】易知過點,且斜率不存在的直線為,滿足與拋物線只有一個公共點.當直線的斜率存在時,設(shè)直線方程為,與聯(lián)立得,當時,方程有一個解,即直線與擾物線只有一個公共點.故滿足題意的直線有2條.故選:B8、C【解析】由已知得數(shù)列是以2為首項,以2為公比的等比數(shù)列,求出,再利用等比數(shù)列求和可得答案.【詳解】∵,∴,所以,數(shù)列是以2為首項,以2為公比的等比數(shù)列,則,∴,∴,則,解得.故選:C.9、B【解析】由公切線條數(shù)得兩圓外切,由此可得的關(guān)系,從而點在以原點為圓心,4為半徑的圓上,記,由求得的最小值,平方后即得結(jié)論【詳解】圓標準方程為,,半徑為,圓標準方程為,,半徑為,兩圓有三條公切線,則兩圓外切,所以,即,點在以原點為圓心,4為半徑的圓上,記,,所以,所以的最小值為故選:B10、A【解析】分析可知對任意的恒成立,利用參變量分離法結(jié)合二次函數(shù)的基本性質(zhì)可求得實數(shù)的取值范圍.【詳解】因為,則,由題意可知,對任意的恒成立,則,當時,在上單調(diào)遞減,在上單調(diào)遞減,所以,,故.故選:A.11、A【解析】設(shè)直線,利用直線與圓相切,求得斜率,再利用弦長公式求弦長【詳解】設(shè)過點的直線.由直線與圓、圓均相切,得解得(1).設(shè)點到直線的距離為則(2).又圓的半徑直線截圓所得弦長結(jié)合(1)(2)兩式,解得12、A【解析】方程表示雙曲線則,解得,是“方程表示雙曲線”的充分不必要條件.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)出點,,,的坐標,表示出直線,的斜率,作和后利用基本不等式求最值,利用離心率求得與的關(guān)系,則答案可求詳解】解:設(shè),,,,,,,,,,,當且僅當,即時等號成立,是橢圓長軸的兩個端點,,是橢圓上關(guān)于軸對稱的兩點,,,即,的最小值為,橢圓的離心率為,,即,得,的最小值為故答案為:14、4或9.【解析】分析:先根據(jù)組合數(shù)性質(zhì)得,解方程得結(jié)果詳解:因為=,所以因此點睛:組合數(shù)性質(zhì):15、【解析】根據(jù)分類加法計數(shù)原理,結(jié)合題中定義、組合的定義進行求解即可.【詳解】兩位數(shù)的回文奇數(shù)有,共個,三位數(shù)的回文奇數(shù)有,四位數(shù)的回文奇數(shù)有,所以在內(nèi)的回文奇數(shù)的個數(shù)為,故答案為:16、【解析】根據(jù)條件可知以為直徑的圓在橢圓的內(nèi)部,可得,再根據(jù),即可求得離心率的取值范圍.【詳解】根據(jù)條件可知,以為直徑的圓與橢圓沒有交點,即,即,,即.故填:.【點睛】本題考查橢圓離心率的取值范圍,求橢圓離心率是??碱}型,涉及的方法包含1.根據(jù)直接求,2.根據(jù)條件建立關(guān)于的齊次方程求解,3.根據(jù)幾何關(guān)系找到的等量關(guān)系求解.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)分布列答案見解析,數(shù)學期望:【解析】(1)根據(jù)表中的數(shù)據(jù)和公式直接求解即可,(2)由題意可知,的可能取值為0,1,2,3,然后求各自對應(yīng)的概率,從而可求得分布列和期望【小問1詳解】.,...【小問2詳解】由題意可知,的可能取值為0,1,2,3.,,分布列為0123.18、(1);(2)證明見解析.【解析】(1)由離心率、過點和橢圓關(guān)系可構(gòu)造方程求得,由此可得橢圓方程;(2)當直線斜率不存在時,表示出兩點坐標,由兩點連線斜率公式表示出,整理可得直線為;當直線斜率存在時,設(shè),與橢圓方程聯(lián)立可得韋達定理的形式,代入中整理可得,由此可得直線所過定點;綜合兩種情況可得直線過定點.【詳解】(1)橢圓過點,即,;,又,,橢圓的方程為:.(2)當直線斜率不存在時,設(shè)直線方程為,則,則,,解得:,直線方程為;當直線斜率存在時,設(shè)直線方程為,聯(lián)立方程組得:,設(shè),則,(*),則,將*式代入化簡可得:,即,整理得:,代入直線方程得:,即,聯(lián)立方程組,解得:,,直線恒過定點;綜上所述:直線恒過定點.【點睛】思路點睛:本題考查直線與橢圓綜合應(yīng)用中的直線過定點問題的求解,求解此類問題的基本思路如下:①假設(shè)直線方程,與橢圓方程聯(lián)立,整理為關(guān)于或的一元二次方程的形式;②利用求得變量的取值范圍,得到韋達定理的形式;③利用韋達定理表示出已知中的等量關(guān)系,代入韋達定理可整理得到變量間的關(guān)系,從而化簡直線方程;④根據(jù)直線過定點的求解方法可求得結(jié)果.19、(1)(2),【解析】(1)由與解方程組即可得解;(2)求導(dǎo)后得到函數(shù)的單調(diào)區(qū)間與極值后,比較端點值即可得解.【詳解】(1)求導(dǎo)得,處有極值,即,又圖象過點,代入可得..(2)由(1)知,令得又,.列表如下:0230+4↘極小值↗1在時,,.【點睛】本題考查了導(dǎo)數(shù)的簡單應(yīng)用,屬于基礎(chǔ)題.20、(1)證明見解析(2)【解析】(1)依題意可得,再根據(jù)面面垂直的性質(zhì)得到平面,即可得到,即可得證;(2)取的中點為,連接,根據(jù)面面垂直的性質(zhì)得到平面,連接,即可得到為與底面所成角,令,,利用銳角三角函數(shù)的定義求出,建立如圖所示空間直角坐標系,利用空間向量法求出二面角的余弦值,即可得解;【小問1詳解】解:證明:在正中,為的中點,∴∵平面平面,平面平面,且.∴平面,又∵平面∴.又∵,且,平面.∴平面【小問2詳解】解:如圖,取的中點為,連接,在正中,,平面平面,平面平面,∴平面,連接,則為與底面所成角,即.不妨取,,,,∴以為原點建立如圖所示的空間直角坐標系,則有,,,,,,∴,設(shè)面的一個法向量為,則由令,則,又因為面,取作為面的一個法向量,設(shè)二面角為,∴,∴,因此二面角的正弦值為21、(1)證明見詳解(2)【解析】(1)將線面平行轉(zhuǎn)化為面面平行,由已知易證;(2)延長相交與點F,利用等體積法求點A到平面PCE,然后由可得.【小問1詳解】四邊形ABCD為正方形平面PAD,平面PAD平面PAD同理,,平面PAD又平面,平面平面平面PAD平面平面PAD【小問2詳解】延長相交與點F,因為,所以分別為的中點.記點到平面PCF為d,直線AB與平面PCE所成角為,則.易知,,,,因為平面ABCD,所以,所以因為,所以由得:即,得所以22.22、(Ⅰ)證明見解析;(Ⅱ)【解析】(Ⅰ)運用線面平行的判定定理證明;(Ⅱ)借助體積相等建立方程求解即可【詳解】(Ⅰ)證明:取的中點,連接,因為,所以,又因為平面,所以,所以平面,因為平面,所以∥,面,平面,所以∥平面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論