版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
MartinWilsonLecture1slide1SuperconductingmagnetsforAcceleratorsWhoneedssuperconductivityanyway?
AbolishOhm’sLaw!nopowerconsumption (althoughdoneedrefrigerationpower)highcurrentdensityampereturnsarecheap,sowedon’tneediron (althoughoftenuseitforshielding)Consequenceslowerpowerbillshighermagneticfieldsmeanreducedbendradius
smallerrings
reducedcapitalcost
newtechnicalpossibilities (egmuoncollider)higherquadrupolegradients
higherluminosityMartinWilsonLecture1slide2SuperconductingmagnetsforAccelerators
PlanoftheCourse
MartinNWilson(RutherfordLab
OxfordInstruments
consultant)
1Introductionwheretofindmoreinformationpropertiesofsuperconductors,criticalfield,criticaltemperature&criticalcurrentdensityhightemperaturesuperconductorsHTSmagneticfieldsandhowtocreatethemloadlinesandtemperaturemargindegradationandtraining2Controllingtraining&finefilamentscausesoftrainingminimumpropagatingzonesMPZandminimumquenchenergyMQEscreeningcurrentsandthecriticalstatemodelfluxjumpingmagnetizationandfielderrors3Cables&quenchingwhycables?couplingincablesfielderrorscausedbycablemagnetizationthequenchprocess,internalandexternalvoltagesdecaytimesandtemperaturerisepropagationofthenormalzone,quenchprotectionschemes,protectionofLHC4Manufacturingandtestingconductorandcablemanufacturemagnetmanufacture
measurementofcriticalcurrentandmagnetizationcurrentleadsandpersistentcurrentswitchingsomeexamplesofsuperconductingacceleratorsMartinWilsonLecture1slide3SomeusefulreferencesSuperconductingMagnetsSuperconductingAcceleratorMagnets:KHMess,PSchmuser,SWolf.,pubWorldScientific,(1996)ISBN981-02-2790-6HighFieldSuperconductingMagnets:FMAsner,pubOxfordUniversityPress(1999)ISBN0198517645CaseStudiesinSuperconductingMagnets:YIwasa,pubPlenumPress,NewYork(1994),ISBN0-306-44881-5.SuperconductingMagnets:MNWilson,pubOxfordUniversityPress(1983)ISBN0-019-854805-2ProcAppliedSuperconductivityConference:pubasIEEETransAppliedSuperconductivity,Mar93to99,andasIEEETransMagneticsMar75to91HandbookofAppliedSuperconductivityedBSeeber,pubUKInstitutePhysics1998CryogenicsHeliumCryogenicsVanSciverSW,pubPlenum86ISBN0-0306-42335-9CryogenicEngineering,HandsBA,pubAcademicPress86ISBN0-012-322991-XCryogenics:publishedmonthlybyButterworthsCryogenie:SesApplicationsenSupraconductivite,pubIIR177BoulevardMalesherbesF5017ParisFranceMaterialsMechanicalMaterialsatLowTemperature:EdRPReed&AFClark,pubAm.Soc.Metals1983.ISBN0-87170-146-4HandbookonMaterialsforSuperconductingMachinerypubBatelleColumbusLaboratories1977.Nonmetallicmaterialsandcompositesatlowtemperatures:EdAFClark,RPReed,GHartwigpubPlenumNonmetallicmaterialsandcompositesatlowtemperatures2,EdGHartwig,DEvans,pubPlenum1982AusteniticSteelsatlowtemperaturesEditorsR.P.ReedandT.Horiuchi,pubPlenum1983SuperconductingMaterialsSuperconductorScienceandTechnology,publishedmonthlybyInstituteofPhysics(UK).SuperconductivityofmetalsandCuprates,JRWaldram,InstituteofPhysicsPublishing(1996)ISBN0852743378HighTemperatureSuperconductors:ProcessingandScience,ABourdillonandNXTanBourdillon,AcademicPress,ISBN0121176800MartinWilsonLecture1slide4MaterialsdatawebsitesCryodataSoftwareProducts
GASPAK propertiesofpurefluidsfromthetriplepointtohightemperatures.
HEPAKpropertiesofheliumincludingsuperfluidabove0.8K,upto1500K.
STEAMPAK
propertiesofwaterfromthetriplepointto2000Kand200MPa.
METALPAK,CPPACK,EXPAK referencepropertiesofmetalsandothersolids,1-300K.
CRYOCOMP propertiesandthermaldesigncalculationsforsolidmaterials,1-300K.
SUPERMAGNET fouruniqueengineeringdesigncodesforsuperconductingmagnetsystems.
KRYOMnumericalmodellingcalculationsonradiation-shieldedcryogenicenclosures.Cryogenicproperties(1-300K)ofmanysolids,includingthermalconductivity,specificheat,andthermalexpansion,havebeenempiricallyfittedandtheequationparametersareavailablefreeonthewebat.Plotsandautomateddata-look-upusingtheNISTequationsareavailableonthewebforafeefrom.Otherfeewebsitesthatusetheirownfittingequationsforanumberofcryogenicmaterialpropertiesinclude:(cryogenicpropertiesofabout100materials), and(temperaturedependentpropertiesofabout1000materials,manyatcryogenictemperatures).Commerciallysuppliedroom-temperaturedataareavailablefreeonlineforabout10to20propertiesofabout24,000materialsat.thankstoJackEkinofNISTforthisinformationMartinWilsonLecture1slide5ThecriticalsurfaceofniobiumtitaniumNiobiumtitaniumNbTiisthestandard‘workhorse’ofthesuperconductingmagnetbusinessitisaductilealloypictureshowsthecriticalsurface,whichistheboundarybetweensuperconductivityandnormalresistivityin3dimensionalspacesuperconductivityprevailseverywherebelowthesurface,resistanceeverywhereaboveitwedefineanuppercriticalfield
Bc2
(atzerotemperatureandcurrent)
andcriticaltemperatureqc(atzerofieldandcurrent)whicharecharacteristicofthealloycompositioncriticalcurrentdensitydependsonprocessingField(Tesla)Temperature(K)Currentdensity(kA.mm-2)MartinWilsonLecture1slide6Thecriticallineat4.2Kbecausemagnetsusuallyworkinboilingliquidhelium,thecriticalsurfaceisoftenrepresentedbyacurveofcurrentversusfieldat4.2KniobiumtinNb3SnhasamuchhigherperformanceintermsofcriticalcurrentfieldandtemperaturethanNbTibutitisbrittleintermetalliccompoundwithpoormechanicalpropertiesnotethatboththefieldandcurrentdensityofbothsuperconductorsarewayabovethecapabilityofconventionalelectromagnetsCriticalcurrentdensityA.mm-210102103104Magneticfield(Tesla)Nb3SnNbTiConventionalironyokeelectromagnetsMartinWilsonLecture1slide7Filamentarycompositewiresforreasonsthatwillbedescribedlater,superconductingmaterialsarealwaysusedincombinationwithagoodnormalconductorsuchascoppertoensureintimatemixingbetweenthetwo,thesuperconductorismadeintheformoffinefilamentsembeddedinamatrixofcoppertypicaldimensionsare:wirediameter0.3-1.0mmfilamentdiameter10-60mmforelectromagneticreasons,thecompositewiresaretwistedsothatthefilamentslooklikearope(seeLecture3onfilamentaryconductorsandcables)MartinWilsonLecture1slide8Criticalproperties:temperatureandfield1wherekBisBoltzmann'sconstantandD(0)istheenergygap(bindingenergyofCooperpairs)ofatq=0CriticalField
Bc:Type1superconductorsshowtheMeissnereffect.FieldisexpelledwhensamplebecomessuperconductingItcostsenergytokeepthefieldout.Criticalfieldhappenswhenthecondensationenergyofthesuperconductingstateisjustequaltotheenergypenaltyofkeepingthefieldout.CriticalTemperature
qcwhereGistheGibbsfreeenergyofthenormal/superconductingstate.BCStheorysayswhereNF
isthedensityofstatesattheFermisurfaceofmetalinnormalstate-calculateitfrom:wheregisSommerfeldcoefficientofelectronicspecificheatMartinWilsonLecture1slide9Criticalproperties:temperatureandfield2combiningthepreviousequations:'thermodynamiccriticalfield'
Bc
solikethecriticaltemperature,Bcisdefinedbythe'chemistry'typicallyforNbTig~103Jm-3K-1
soifq=10KBc=0.24TConclusion:
Type1superconductorsareuselessformagnets!Notehowever:Meissnereffectisnottotal,themagneticfieldactuallypenetratesasmalldistanceltheLondonPenetrationDepth.Anothercharacteristicdistanceisthecoherencelengthz-theminimumdistanceoverwhichtheelectronicstatecanchangefromsuperconductingtonormalMartinWilsonLecture1slide10Criticalproperties:type2superconductorsTheoryofGinsburg,Landau,AbrikosovandGorkovGLAG definestheratiok=l/xIfk>1/
2themagneticfieldcanpenetrateintheformofdiscretefluxoids-Type2asinglefluxoidenclosesfluxwhereh=Planck'sconstant, e=electronicchargeuppercriticalfieldinthe‘dirtylimit'wherernisthenormalstateresistivitythustheuppercriticalfieldforNbTi:g~900Jm-3K-2
rn~65x10-8Wmqc=9.KhenceBc2=18.5TMartinWilsonLecture1slide11Criticalproperties:currentdensityFluxoidsconsistofresistivecoreswithsuper-currentscirculatingroundthem.spacingbetweenthefluxoidsauniformdistributionoffluxoidsgivesnonetcurrentJc=0,butagradientproducesanetcurrentdensitygradientsareproducedbyinhomogeneitiesinthematerial,egdislocationsorprecipitatesprecipitatesofaTiinNbTifluxoidlatticeat5TonthesamescaleMartinWilsonLecture1slide12Criticalproperties:summaryCriticaltemperature:choosetherightmaterialtohavealargeenergygapor'depairingenergy'Criticalfield:chooseaType2superconductorwithahighcriticaltemperatureandahighnormalstateresistivityCriticalcurrentdensity:messupthemicrostructurebycoldworkingandprecipitationheattreatments -thisistheonlyonewherewehaveanycontrolSimilareffectsinhightemperaturesuperconductingmaterials:fluxoidlatticeinBSCCOMartinWilsonLecture1slide13Uppercriticalfieldsofmetallicsuperconductors
Note:ofallthemetallicsuperconductors,onlyNbTiisductile.AlltherestarebrittleintermetalliccompoundsMartinWilsonLecture1slide14Hightemperaturesuperconductorsmanysuperconductorswithcriticaltemperatureabove90K-BSCCOandYBCOoperateinliquidnitrogen?YBCOYBa2Cu3O7MartinWilsonLecture1slide15HightemperaturesuperconductorsYBCOstructureConductionlayersconsistoftwoCuO2layersseparatedbyyttriumatoms.Thechargelayerconsistsofcopper,bariumandoxygenatomsNote:thisstructuremakesthepropertieshighlyanisotropicMartinWilsonLecture1slide16Irreversibilityline-abigdisappointmentUnlikethemetallicsuperconductors,HTSdonothaveasharplydefinedcriticalcurrent.Athighertemperaturesandfields,thereisan'fluxflow'region,wherethematerialisresistive-althoughstillsuperconductingTheboundarybetweenfluxpinningandfluxflowiscalledtheirreversibilityline
metallicHTSMartinWilsonLecture1slide17Fieldsandwaystocreatethem:(1)IronConventionalelectromagnetsironyokereducesmagneticreluctance
reducesampereturnsrequired reducespowerconsumptionironguidesandshapesthefieldIIB100A/m-100A/m1.6TH-1.6TBIronelectromagnet–foraccelerator,HEPexperimenttransformer,motor,generator,etcBUTironsaturatesat~2TMartinWilsonLecture1slide18Fieldsandwaystocreatethem:(2)solenoidsnoiron–fieldshapeissetsolelybythewindingcylindricalwindingazimuthalcurrentflow -egwirewoundonbobbinaxialfieldBIIfieldlinescurveoutwardsattheendsthiscurvatureproducesnonuniformityoffieldverylongsolenoidshavelesscurvatureandmoreuniformfieldBIcanalsoreducefieldcurvaturebymakingthewindingthickerattheendsthismakesthefieldmoreuniformmorecomplicatedwindingshapescanbeusedtomakeveryuniformfieldsMartinWilsonLecture1slide19Fieldsandwaystocreatethem:(3)transversefieldssimplestwindingusesracetrackcoilssaddleshaped'dipole'coilsusedtomakemoreuniformfieldsknownasdipolemagnets(ironversionhas2poles)forgooduniformityneedspecialwindingcrosssections(LHCdipolewinding)someiron-butfieldshapeissetmainlybythewindingusedwhenthelongdimensionistransversetothefield,egacceleratormagnetsIIIBMartinWilsonLecture1slide20CurrentdensityIndesigningamagnet,whatreallymattersistheoverall'engineering'currentdensitytypically:forNbTimat=1.5to3.0ielmetal=0.4to0.25forNb3Snmat~3.0ielmetal~0.25forB2212mat=3.0to4.0ielmetal=0.25to0.2lwindingtakesaccountofspaceoccupiedbyinsulation,coolingchannels,mechanicalreinforcementetcandistypically0.7to0.8MartinWilsonLecture1slide21Importanceofcurrentdensity:(1)solenoidsthefieldproducedbyaninfinitelylongsolenoidisinsolenoidsoffinitelengththecentralfieldis
wherefisafactorlessthan1,typically~0.8sothethickness(volume,cost)ofasolenoidtoproduceagivenfieldisinverselyproportionaltotheengineeringcurrentdensityJe
MartinWilsonLecture1slide22SuperconductingsolenoidssmallsuperconductingsolenoidsforresearchapplicationsalargesolenoidinroutinecommercialoperationforthemagneticseparationofKaolin(chinaclay)MartinWilsonLecture1slide23Solenoidsarenotmuchusedinaccelerators.Theyarehoweverfrequentlyusedindetectors,wherethemagnetfieldprovidesmomentumanalysisofthereactionproducts.World'slargest:DelphisuperconductingsolenoidMartinWilsonLecture1slide24Importanceofcurrentdensity:(2)dipolesfieldproducedbyaperfectdipoleisJe=375Amm-2120mm
9.5x105Ampturns=1.9x106A.mpermJe=37.5Amm-2
9.5x106Ampturns=1.9x107A.mpermILHCdipole660mmIIBMartinWilsonLecture1slide25SomeengineeringcurrentdensitiesMartinWilsonLecture1slide26Criticallineandmagnetloadlines16weexpectthemagnettogoresistive'quench'wherethepeakfieldloadlinecrossesthecriticalcurrentline
*86422468101214FieldT1234567CurrentdensitykAmm-210
temperatureKMartinWilsonLecture1slide27TemperaturemargintoallowforpossibletemperatureexcursionsoperatemagnetbelowIcegrunningat1600Amm-2allowstemperaturetorise0.5Kbeforequench108642246810121416FieldT1234567temperatureK
CurrentdensitykAmm-2temperaturerisemaybecausedby -suddeninternalenergyrelease -aclosses -poorjoints -etc,etcMartinWilsonLecture1slide28Temperaturemargin-dependsonfieldB(T)Jc(4.2)Amm-2Jc(4.7)Amm-2Jc(4.2)Jc(4.7)33881333586%62000158179%954522742%108642246810121416FieldT1234567CurrentdensitykAmm-2temperatureKMartinWilsonLecture1slide29Degradedperformanceand'training'anearlydisappointmentformagnetmakerswasthefactthatmagnetsdidnotgostraighttotheexpectedquenchpoint,asgivenbytheintersectionoftheloadlinewiththecriticalcurrentlineinsteadthemagnetswentresistive-quenched-atmuchlowercurrentsafteraquench,thestoredenergyofthemagnetisdissipatedinthemagnet,raisingitstemperaturewayabovecritical -youmustwaitforittocooldownand thentryagainthesecondtryusuallyquenchesathighercurrentandsoonwiththethird,knownastrainingaftermanytrainingquenchesastablewellconstructedmagnet(bluepoints)getsclosetoit'sexpectedcriticalcurrent,butapoorlyconstructedmagnet(pinkpoints)nevergetsthereMartinWilsonLecture2slide30recaptrainingpoorqualitywindinggoodqualitywindingMartinWilsonLecture2slide31TrainingofanLHCdipolemagnetMartinWilsonLecture2slide32Causesoftraining:(1)lowspecificheatthespecificheatofallsubstancesfallswithtemperatureat4.2K,itis~2,000timeslessthanatroomtemperatureagivenreleaseofenergywithinthewindingthusproduceatemperaturerise2,000timesgreaterthanatroomtemperaturethesmallestenergyreleasecanthereforeproducecatastrophiceffects4.2K300KMartinWilsonLecture2slide33Causesoftraining:(2)Jcdecreaseswithtemperaturebut,bychoosingtooperatethemagnetatacurrentlessthancritical,wecanallowatemperaturemarginatanygivenfield,thecriticalcurrentofNbTifallsalmostlinearlywithtemperature-soanytemperaturerisedrivesthe conductorintotheresistivestateMartinWilsonLecture2slide34Causesoftraining:(3)conductormotionConductorsinamagnetarepushedbytheelectromagneticforces.Sometimestheymovesuddenlyunderthisforce-themagnet'creaks'asthestresscomeson.AlargefractionoftheworkdonebythemagneticfieldinpushingtheconductorisreleasedasfrictionalheatingtypicalnumbersforNbTi: B=5TJ=5x108A.m-2
soifd=10mm thenQ=2.5x104J.m-3Startingfrom4.2K
qfinal
=7.5KworkdoneperunitlengthofconductorifitispushedadistancedzW=F.dz=B.I.dzfrictionalheatingperunitvolumeQ=B.J.dzcan
you
engineerawindingtobetterthan10mm?MartinWilsonLecture2slide35Causesoftraining:(4)resincrackingCalculatethestainenergyinducedinresinbydifferentialthermalcontractionlet: s=tensilestress Y=Young’smodulus
e=differentialstrain n=Poisson’sratiotypically:e=(11.5–3)x10-3Y=7x109Pan=1/3
Wetrytostopwiremovementbyimpregnatingthewindingwithepoxyresin.Unfortunatelytheresincontractsmuchmorethanthemetal,soitgoesintotension.Furthermore,almostallorganicmaterialsbecomebrittleatlowtemperature.
brittleness+tension
cracking
energyreleaseQ1
=2.5x105J.m-3
qfinal=16KQ3
=2.3x106J.m-3 qfinal=28Kuniaxialstraintriaxialstrainanunknown,butlarge,fractionofthisstoredenergywillbereleasedasheatduringacrackInterestingfact:magnetsimpregnatedwithparaffinwaxshowalmostnotrainingalthoughthewaxisfullofcracksaftercooldown.PresumablythewaxbreaksbeforeithashadchancetostoreupanystrainenergyMartinWilsonLecture2slide36Howtoreducetraining?makethewindingfittogetherexactlytoreducemovementofconductorsunderfieldforcespre-compressthewindingtoreducemovementunderfieldforcesifusingresin,minimizethevolumeandchooseacrackresistanttypematchthermalcontractions,egfillepoxywithmineralorglassfibreimpregnatewithwax-butpoormechanicalproperties1)Reducethedisturbancesoccurringinthemagnetwinding2)Maketheconductorabletowithstanddisturbanceswithoutquenchingincreasethetemperaturemargin -operateatlowercurrent -highercriticaltemperature-HTS?increasethecoolingincreasethespecificheatmostof2)maybecharacterizedbyasinglenumberMinimumQuenchEnergyMQE=energyinputatapointwhichisjustenoughtotriggeraquenchMartinWilsonLecture2slide37QuenchinitiationbyadisturbanceCERNpictureoftheinternalvoltageinanLHCdipolejustbeforeaquenchnotetheinitiatingspike-conductormotion?afterthespike,conductorgoesresistive,thenitalmostrecoversbutthengoesontoafullquenchcanwedesignconductorstoencouragethatrecoveryandavoidthequench?MartinWilsonLecture2slide38MinimumpropagatingzoneMPZThinkofaconductorwhereashortsectionhasbeenheated,sothatitisresistiveIfheatisconductedoutoftheresistivezonefasterthanitisgenerated,thezonewillshrink-viceversaitwillgrow.TheboundarybetweenthesetwoconditionsiscalledtheminimumpropagatingzoneMPZforbeststabilitymakeMPZaslargeaspossible where: k=thermalconductivity r=resistivity A=crosssectionalareaofconductor
h=heattransfercoefficienttocoolant–ifthereisanyincontact
P=cooledperimeterofconductorthebalancepointmaybefoundbyequatingheatgenerationtoheatremoved.Veryapproximately,wehave:lqcqohAJPEnergytosetupMPZiscalledtheMinimumQuenchEnergy
MQEMartinWilsonLecture2slide39HowtomakealargeMPZandMQEmakethermalconductivityklargemakeresistivityrsmallmakeheattransferhlarge(limitiscryostability)but
lowJemakeratiocooledperimeter/crosssectionareaP/AlargeMartinWilsonLecture2slide40LargeMPZlargeMQElesstrainingmakethermalconductivityklargemakeresistivityrsmallmakeheattransferhlargemakeratiocooledperimeter/crosssectionareaP/AlargeNbTihashighrandlowkcopperhaslowrandhighkmixcopperandNbTiinafilamentarycompositewiremakeNbTiinfinefilamentsforintimatemixingmaximumdiameteroffilaments~50mmmakethewindingsporoustoliquidhelium -superfluidisbestfinefilamentsalsoeliminatefluxjumping (seelaterslides)MartinWilsonLecture2slide41MeasurementofMQEmeasureMQEbyinjectingheatpulsesintoasinglewireofthecablegoodresultswhenspacesincablearefilledwithporousmetal -excellentheattransfertotheheliumMartinWilsonLecture2slide42Anothercauseoftraining:fluxjumpingusualmodelisasuperconductingslabinachangingmagneticfieldByassumeit'sinfinitelylonginthez
andydirections-simplifiestoa1dimproblemdB/dtinducesanelectricfieldEwhichcausesscreeningcurrentstoflowatcriticalcurrentdensityJcknownasthecriticalstatemodelor
Beanmodelinthe1diminfiniteslabgeometry,Maxwell'sequationsays
BJJxwhenasuperconductorissubjectedtoachangingmagneticfield,screeningcurrentsareinducedtoflowscreeningcurrentsareinadditiontothetransportcurrent,whichcomesfromthepowersupplytheyarelikeeddycurrentsbut,becausethereisnoresistance,theydon'tdecaysouniformJcmeansaconstantfieldgradientinsidethesuperconductorMartinWilsonLecture2slide43ThefluxpenetrationprocessBfieldincreasingfromzerofielddecreasingthroughzeroplotfieldprofileacrosstheslabfullypenetratedMartinWilsonLecture2slide44ThefluxpenetrationprocessBfieldincreasingfromzerofielddecreasingthroughzeroplotfieldprofileacrosstheslabfullypenetratedBeancriticalstatemodelcurrentdensityeverywhereisJcorzerochangecomesinfromtheoutersurfaceMartinWilsonLecture2slide45FluxpenetrationfromanotherviewpointsuperconductorvacuumThinkofthescreeningcurrents,intermsofagradientinfluxoiddensitywithinthesuperconductor.Pressurefromtheincreasingexternalfieldpushesthefluxoidsagainstthepinningforce,andcausesthemtopenetrate,withacharacteristicgradientinfluxoiddensityAtacertainleveloffield,thegradientoffluxoiddensitybecomesunstableandcollapses
–afluxjumpMartinWilsonLecture2slide46Fluxjumping:whyithappensItarisesbecause:-magneticfieldinducesscreeningcurrents,flowingatcriticaldensityJcUnstablebehaviourisshownbyalltype2andHTsuperconductorswhensubjectedtoamagneticfieldBB*changeinscreeningcurrentsallowsfluxtomoveintothesuperconductorfluxmotiondissipatesenergythermaldiffusivityinsuperconductorsislow,soenergydissipationcauseslocaltemperaturerisecriticalcurrentdensityfallswithincreasingtemperaturegoto*DQDqDf
JcCurefluxjumpingbymakingsuperconductorintheformoffinefilaments–weakens
Df
DQMartinWilsonLecture2slide47Fluxjumping:thenumbersforNbTitypicalfiguresforNbTiat4.2Kand1TJccriticalcurrentdensity=7.5x109Am-2
gdensity=6.2x103kg.m3Cspecificheat=0.89J.kg-1K-1
q
ccriticaltemperature=9.0KNotes:leaststableatlowfieldbecauseJcishighestinstabilitygetsworsewithdecreasingtemperaturebecauseJcincreasesandCdecreasescriteriongivesthesizeatwhichfilamentisjuststableagainstinfinitelysmalldisturbances -stillsensitivetomoderatedisturbances,egmechanicalmovementbettertogosomewhatsmallerthanthelimitingsizeinpractice50mmdiameterseemstoworkOKFluxjumpingisasolvedproblem
soa=33mm,ie66mmdiameterfilamentscriterionforstabilityagainstfluxjumpinga=halfwidthoffilamentMartinWilsonLecture2slide48Magnetizationforcylindricalfilamentstheinnercurrentboundaryisroughlyelliptical(controversial)whenfullypenetrated,themagnetizationiswherea=filamentradiusNote:MisheredefinedperunitvolumeofNbTifilamentWhenviewedfromoutsidethesample,thepersistentcurrentsproduceamagneticmoment.ProblemforacceleratorsbecauseitspoilstheprecisefieldshapeWecandefineamagnetization(magneticmomentperunitvolume)NBunitsofHforafullypenetratedslabMartinWilsonLecture2slide49MagnetizationofasuperconductorTheinducedcurrentsproduceamagneticmomentandhenceamagnetization =magneticmomentperunitvolumeMBextMartinWilsonLecture2slide50Synchrotroninjectionsynchrotroninjectsatlowfield,rampstohighfieldandthenbackdownagainnotehowquicklythemagnetizationchangeswhenwestarttherampupMBBinjectionMartinWilsonLecture2slide51MeasurementofmagnetizationInfield,thesuperconductorbehavesjustlikeamagneticmaterial.Wecanplotthemagnetizationcurveusingamagnetometer.Itshowshysteresis-justlikeirononlyinthiscasethemagnetizationisbothdiamagneticandparamagnetic.
BMNotetheminorloops,wherefieldandthereforescreeningcurrentsarereversingThemagnetometer,comprising2balancedsearchcoils,isplacedwithintheboreofasuperconductingsolenoid.Thesecoilsareconnectedinseriesoppositionandtheangleofsmallbalancingcoilisadjustedsuchthat,withnothinginthecoils,thereisnosignalattheintegrator.Withasuperconductingsampleinonecoil,theintegratormeasuresmagnetizationwhenthesolenoidfieldissweptupanddownMartinWilsonLecture2slide52FinefilamentsrecapWecanreduceMbymakingthesuperconductorasfinefilaments.Foreaseofhandling,anarrayofmanyfilamentsisembeddedinacoppermatrixUnfortunately,inchangingfields,thefilamentarecoupledtogether;screeningcurrentsgouptheLHSfilamentsandreturndowntheRHSfilaments,crossingthecop
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年智能交通信號控制系統(tǒng)研發(fā)與實施合同
- 2021年學(xué)生的軍訓(xùn)總結(jié)五篇
- 自動化專業(yè)的自薦信模板匯編七篇
- 去學(xué)院實習(xí)報告錦集九篇
- 課前三分鐘學(xué)生演講稿15篇
- 爭當(dāng)文明中學(xué)生演講稿范文
- 江蘇省鹽都市八年級歷史上冊 第三單元 第12課 星星之火%2C可以燎原教學(xué)實錄 新人教版
- 廣東省惠東縣平海中學(xué)高中地理 1.1.2人口數(shù)量的變化教學(xué)實錄 新人教版必修2
- 營銷目標(biāo)范文
- 消費成本-詳解
- 新時代高職英語(基礎(chǔ)模塊)2 Unit3
- 全州疫苗接種與免疫規(guī)劃培訓(xùn)班講話稿
- 詩化小說示范課
- 房地產(chǎn)運營管理工作思路
- 有機(jī)合成化學(xué)3-基團(tuán)的保護(hù)與基團(tuán)的反應(yīng)性轉(zhuǎn)換
- 心內(nèi)科住院醫(yī)師規(guī)培出科考試9
- 危險化學(xué)品生產(chǎn)企業(yè)安全生產(chǎn)管理制度編制導(dǎo)則
- DB23-T 3474-2023非煤智慧礦山信息系統(tǒng)技術(shù)規(guī)范
- 某金礦技改工程建設(shè)項目可行性研究報告
- 消化鏡之電子結(jié)腸鏡課件
- 2023-2024學(xué)年安徽省蕪湖市小學(xué)語文五年級期末自測考試題附參考答案和詳細(xì)解析
評論
0/150
提交評論