2024屆廣東省東莞市寮步鎮(zhèn)XX學校中考數(shù)學押題試卷含解析_第1頁
2024屆廣東省東莞市寮步鎮(zhèn)XX學校中考數(shù)學押題試卷含解析_第2頁
2024屆廣東省東莞市寮步鎮(zhèn)XX學校中考數(shù)學押題試卷含解析_第3頁
2024屆廣東省東莞市寮步鎮(zhèn)XX學校中考數(shù)學押題試卷含解析_第4頁
2024屆廣東省東莞市寮步鎮(zhèn)XX學校中考數(shù)學押題試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆廣東省東莞市寮步鎮(zhèn)XX學校中考數(shù)學押題試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列計算中正確的是()A.x2+x2=x4 B.x6÷x3=x2 C.(x3)2=x6 D.x-1=x2.已知一次函數(shù)y=kx+b的大致圖象如圖所示,則關于x的一元二次方程x2﹣2x+kb+1=0的根的情況是()A.有兩個不相等的實數(shù)根 B.沒有實數(shù)根C.有兩個相等的實數(shù)根 D.有一個根是03.方程的解是A.3 B.2 C.1 D.04.如圖,在扇形CAB中,CA=4,∠CAB=120°,D為CA的中點,P為弧BC上一動點(不與C,B重合),則2PD+PB的最小值為()A.4+23 B.435.若數(shù)a,b在數(shù)軸上的位置如圖示,則()A.a(chǎn)+b>0 B.a(chǎn)b>0 C.a(chǎn)﹣b>0 D.﹣a﹣b>06.一元二次方程x2+kx﹣3=0的一個根是x=1,則另一個根是()A.3 B.﹣1 C.﹣3 D.﹣27.從甲、乙、丙、丁四人中選一人參加詩詞大會比賽,經(jīng)過三輪初賽,他們的平均成績都是86.5分,方差分別是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你認為派誰去參賽更合適()A.甲 B.乙 C.丙 D.丁8.小華在做解方程作業(yè)時,不小心將方程中的一個常數(shù)弄臟了而看不清楚,被弄臟的方程是,這該怎么辦呢?他想了一想,然后看了一下書后面的答案,知道此方程的解是x=5,于是,他很快便補好了這個常數(shù),并迅速地做完了作業(yè)。同學們,你能補出這個常數(shù)嗎?它應該是(

)A.2

B.3

C.4

D.59.如果一個多邊形的內角和是外角和的3倍,則這個多邊形的邊數(shù)是()A.8 B.9 C.10 D.1110.已知函數(shù)y=ax2+bx+c的圖象如圖所示,則關于x的方程ax2+bx+c﹣4=0的根的情況是A.有兩個相等的實數(shù)根 B.有兩個異號的實數(shù)根C.有兩個不相等的實數(shù)根 D.沒有實數(shù)根11.要使式子有意義,的取值范圍是()A. B.且 C..或 D.且12.下列計算正確的是()A.2a2﹣a2=1 B.(ab)2=ab2 C.a(chǎn)2+a3=a5 D.(a2)3=a6二、填空題:(本大題共6個小題,每小題4分,共24分.)13.當2≤x≤5時,二次函數(shù)y=﹣(x﹣1)2+2的最大值為_____.14.我們知道:四邊形具有不穩(wěn)定性.如圖,在平面直角坐標系xOy中,矩形ABCD的邊AB在x軸上,,,邊AD長為5.現(xiàn)固定邊AB,“推”矩形使點D落在y軸的正半軸上(落點記為),相應地,點C的對應點的坐標為_______.15.《九章算術》是中國傳統(tǒng)數(shù)學最重要的著作,在“勾股”章中有這樣一個問題:“今有邑方二百步,各中開門,出東門十五步有木,問:出南門幾步而見木?”用今天的話說,大意是:如圖,是一座邊長為200步(“步”是古代的長度單位)的正方形小城,東門位于的中點,南門位于的中點,出東門15步的處有一樹木,求出南門多少步恰好看到位于處的樹木(即點在直線上)?請你計算的長為__________步.16.已知,在Rt△ABC中,∠C=90°,AC=9,BC=12,點D、E分別在邊AC、BC上,且CD:CE=3︰1.將△CDE繞點D順時針旋轉,當點C落在線段DE上的點F處時,BF恰好是∠ABC的平分線,此時線段CD的長是________.17.已知⊙O1、⊙O2的半徑分別為2和5,圓心距為d,若⊙O1與⊙O2相交,那么d的取值范圍是_________.18.已知x+y=8,xy=2,則x2y+xy2=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)為了解某校九年級男生1000米跑的水平,從中隨機抽取部分男生進行測試,并把測試成績分為D、C、B、A四個等次繪制成如圖所示的不完整的統(tǒng)計圖,請你依圖解答下列問題:(1)a=,b=,c=;(2)扇形統(tǒng)計圖中表示C等次的扇形所對的圓心角的度數(shù)為度;(3)學校決定從A等次的甲、乙、丙、丁四名男生中,隨機選取兩名男生參加全市中學生1000米跑比賽,請用列表法或畫樹狀圖法,求甲、乙兩名男生同時被選中的概率.20.(6分)先化簡,再求值:,其中,a、b滿足.21.(6分)如圖,四邊形ABCD,AD∥BC,DC⊥BC于C點,AE⊥BD于E,且DB=DA.求證:AE=CD.22.(8分)某校為了解本校學生每周參加課外輔導班的情況,隨機調査了部分學生一周內參加課外輔導班的學科數(shù),并將調查結果繪制成如圖1、圖2所示的兩幅不完整統(tǒng)計圖(其中A:0個學科,B:1個學科,C:2個學科,D:3個學科,E:4個學科或以上),請根據(jù)統(tǒng)計圖中的信息,解答下列問題:請將圖2的統(tǒng)計圖補充完整;根據(jù)本次調查的數(shù)據(jù),每周參加課外輔導班的學科數(shù)的眾數(shù)是個學科;若該校共有2000名學生,根據(jù)以上調查結果估計該校全體學生一周內參加課外輔導班在3個學科(含3個學科)以上的學生共有人.23.(8分)如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點A(m,﹣2).求反比例函數(shù)的解析式;觀察圖象,直接寫出正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍;若雙曲線上點C(2,n)沿OA方向平移個單位長度得到點B,判斷四邊形OABC的形狀并證明你的結論.24.(10分)如圖1,在Rt△ABC中,∠C=90°,AC=BC=2,點D、E分別在邊AC、AB上,AD=DE=AB,連接DE.將△ADE繞點A逆時針方向旋轉,記旋轉角為θ.(1)問題發(fā)現(xiàn)①當θ=0°時,=;②當θ=180°時,=.(2)拓展探究試判斷:當0°≤θ<360°時,的大小有無變化?請僅就圖2的情形給出證明;(3)問題解決①在旋轉過程中,BE的最大值為;②當△ADE旋轉至B、D、E三點共線時,線段CD的長為.25.(10分)某商店在2014年至2016年期間銷售一種禮盒.2014年,該商店用3500元購進了這種禮盒并且全部售完;2016年,這種禮盒的進價比2014年下降了11元/盒,該商店用2400元購進了與2014年相同數(shù)量的禮盒也全部售完,禮盒的售價均為60元/盒.(1)2014年這種禮盒的進價是多少元/盒?(2)若該商店每年銷售這種禮盒所獲利潤的年增長率相同,問年增長率是多少?26.(12分)如圖,已知:AD和BC相交于點O,∠A=∠C,AO=2,BO=4,OC=3,求OD的長.27.(12分)如圖,在△ABC中,D、E分別是AB、AC的中點,BE=2DE,延長DE到點F,使得EF=BE,連接CF.(1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解題分析】

根據(jù)合并同類項的方法、同底數(shù)冪的除法法則、冪的乘方、負整數(shù)指數(shù)冪的意義逐項求解,利用排除法即可得到答案.【題目詳解】A.x2+x2=2x2,故不正確;B.x6÷x3=x3,故不正確;C.(x3)2=x6,故正確;D.x﹣1=,故不正確;故選C.【題目點撥】本題考查了合并同類項的方法、同底數(shù)冪的除法法則、冪的乘方、負整數(shù)指數(shù)冪的意義,解答本題的關鍵是熟練掌握各知識點.2、A【解題分析】

判斷根的情況,只要看根的判別式△=b2?4ac的值的符號就可以了.【題目詳解】∵一次函數(shù)y=kx+b的圖像經(jīng)過第一、三、四象限∴k>0,b<0∴△=b2?4ac=(-2)2-4(kb+1)=-4kb>0,∴方程x2﹣2x+kb+1=0有兩個不等的實數(shù)根,故選A.【題目點撥】根的判別式3、A【解題分析】試題分析:分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解:去分母得:2x=3x﹣3,解得:x=3,經(jīng)檢驗x=3是分式方程的解.故選A.4、D【解題分析】

如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,推出△APD∽△ABP′,得到BP′=2PD,于是得到2PD+PB=BP′+PB≥PP′,根據(jù)勾股定理得到PP′=2+82+(2【題目詳解】如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,∵AP'AB∴△APD∽△ABP′,∴BP′=2PD,∴2PD+PB=BP′+PB≥PP′,∴PP′=2+82∴2PD+PB≥47,∴2PD+PB的最小值為47,故選D.【題目點撥】本題考查了軸對稱-最短距離問題,相似三角形的判定和性質,勾股定理,正確的作出輔助線是解題的關鍵.5、D【解題分析】

首先根據(jù)有理數(shù)a,b在數(shù)軸上的位置判斷出a、b兩數(shù)的符號,從而確定答案.【題目詳解】由數(shù)軸可知:a<0<b,a<-1,0<b<1,所以,A.a+b<0,故原選項錯誤;B.ab<0,故原選項錯誤;C.a-b<0,故原選項錯誤;D.,正確.故選D.【題目點撥】本題考查了數(shù)軸及有理數(shù)的乘法,數(shù)軸上的數(shù):右邊的數(shù)總是大于左邊的數(shù),從而確定a,b的大小關系.6、C【解題分析】試題分析:根據(jù)根與系數(shù)的關系可得出兩根的積,即可求得方程的另一根.設m、n是方程x2+kx﹣3=0的兩個實數(shù)根,且m=x=1;則有:mn=﹣3,即n=﹣3;故選C.【考點】根與系數(shù)的關系;一元二次方程的解.7、A【解題分析】

根據(jù)方差的概念進行解答即可.【題目詳解】由題意可知甲的方差最小,則應該選擇甲.故答案為A.【題目點撥】本題考查了方差,解題的關鍵是掌握方差的定義進行解題.8、D【解題分析】

設這個數(shù)是a,把x=1代入方程得出一個關于a的方程,求出方程的解即可.【題目詳解】設這個數(shù)是a,把x=1代入得:(-2+1)=1-,∴1=1-,解得:a=1.故選:D.【題目點撥】本題主要考查對解一元一次方程,等式的性質,一元一次方程的解等知識點的理解和掌握,能得出一個關于a的方程是解此題的關鍵.9、A【解題分析】分析:根據(jù)多邊形的內角和公式及外角的特征計算.詳解:多邊形的外角和是360°,根據(jù)題意得:

110°?(n-2)=3×360°

解得n=1.

故選A.點睛:本題主要考查了多邊形內角和公式及外角的特征.求多邊形的邊數(shù),可以轉化為方程的問題來解決.10、A【解題分析】

根據(jù)拋物線的頂點坐標的縱坐標為4,判斷方程ax2+bx+c﹣4=0的根的情況即是判斷函數(shù)y=ax2+bx+c的圖象與直線y=4交點的情況.【題目詳解】∵函數(shù)的頂點的縱坐標為4,∴直線y=4與拋物線只有一個交點,∴方程ax2+bx+c﹣4=0有兩個相等的實數(shù)根,故選A.【題目點撥】本題考查了二次函數(shù)與一元二次方程,熟練掌握一元二次方程與二次函數(shù)間的關系是解題的關鍵.11、D【解題分析】

根據(jù)二次根式和分式有意義的條件計算即可.【題目詳解】解:∵有意義,∴a+2≥0且a≠0,解得a≥-2且a≠0.故本題答案為:D.【題目點撥】二次根式和分式有意義的條件是本題的考點,二次根式有意義的條件是被開方數(shù)大于等于0,分式有意義的條件是分母不為0.12、D【解題分析】

根據(jù)合并同類項法則判斷A、C;根據(jù)積的乘方法則判斷B;根據(jù)冪的乘方法判斷D,由此即可得答案.【題目詳解】A、2a2﹣a2=a2,故A錯誤;B、(ab)2=a2b2,故B錯誤;C、a2與a3不是同類項,不能合并,故C錯誤;D、(a2)3=a6,故D正確,故選D.【題目點撥】本題考查冪的乘方與積的乘方,合并同類項,熟練掌握各運算的運算性質和運算法則是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1.【解題分析】

先根據(jù)二次函數(shù)的圖象和性質判斷出2≤x≤5時的增減性,然后再找最大值即可.【題目詳解】對稱軸為∵a=﹣1<0,∴當x>1時,y隨x的增大而減小,∴當x=2時,二次函數(shù)y=﹣(x﹣1)2+2的最大值為1,故答案為:1.【題目點撥】本題主要考查二次函數(shù)在一定范圍內的最大值,掌握二次函數(shù)的圖象和性質是解題的關鍵.14、【解題分析】分析:根據(jù)勾股定理,可得,根據(jù)平行四邊形的性質,可得答案.詳解:由勾股定理得:=,即(0,4).矩形ABCD的邊AB在x軸上,∴四邊形是平行四邊形,A=B,=AB=4-(-3)=7,與的縱坐標相等,∴(7,4),故答案為(7,4).點睛:本題考查了多邊形,利用平行四邊形的性質得出A=B,=AB=4-(-3)=7是解題的關鍵.15、【解題分析】分析:由正方形的性質得到∠EDG=90°,從而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性質得到CK:KD=HD:HA,求解即可得到結論.詳解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.∵∠C+∠KDC=90°,∴∠C=∠HDA.∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,∴CK:KD=HD:HA,∴CK:100=100:15,解得:CK=.故答案為:.點睛:本題考查了相似三角形的應用.解題的關鍵是證明△CKD∽△DHA.16、2【解題分析】分析:設CD=3x,則CE=1x,BE=12﹣1x,依據(jù)∠EBF=∠EFB,可得EF=BE=12﹣1x,由旋轉可得DF=CD=3x,再根據(jù)Rt△DCE中,CD2+CE2=DE2,即可得到(3x)2+(1x)2=(3x+12﹣1x)2,進而得出CD=2.詳解:如圖所示,設CD=3x,則CE=1x,BE=12﹣1x.∵=,∠DCE=∠ACB=90°,∴△ACB∽△DCE,∴∠DEC=∠ABC,∴AB∥DE,∴∠ABF=∠BFE.又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠EBF=∠EFB,∴EF=BE=12﹣1x,由旋轉可得DF=CD=3x.在Rt△DCE中,∵CD2+CE2=DE2,∴(3x)2+(1x)2=(3x+12﹣1x)2,解得x1=2,x2=﹣3(舍去),∴CD=2×3=2.故答案為2.點睛:本題考查了相似三角形的判定與性質,勾股定理以及旋轉的性質,解題時注意:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.17、3<d<7【解題分析】

若兩圓的半徑分別為R和r,且R≥r,圓心距為d:相交,則R-r<d<R+r,從而得到圓心距O1O2的取值范圍.【題目詳解】∵⊙O1和⊙O2的半徑分別為2和5,且兩圓的位置關系為相交,∴圓心距O1O2的取值范圍為5-2<d<2+5,即3<d<7.故答案為:3<d<7.【題目點撥】本題考查的知識點是圓與圓的位置關系,解題的關鍵是熟練的掌握圓與圓的位置關系.18、1【解題分析】

將所求式子提取xy分解因式后,把x+y與xy的值代入計算,即可得到所求式子的值.【題目詳解】∵x+y=8,xy=2,

∴x2y+xy2=xy(x+y)=2×8=1.

故答案為:1.【題目點撥】本題考查的知識點是因式分解的應用,解題關鍵是將所求式子分解因式.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)2、45、20;(2)72;(3)【解題分析】分析:(1)根據(jù)A等次人數(shù)及其百分比求得總人數(shù),總人數(shù)乘以D等次百分比可得a的值,再用B、C等次人數(shù)除以總人數(shù)可得b、c的值;(2)用360°乘以C等次百分比可得;(3)畫出樹狀圖,由概率公式即可得出答案.詳解:(1)本次調查的總人數(shù)為12÷30%=40人,∴a=40×5%=2,b=×100=45,c=×100=20,(2)扇形統(tǒng)計圖中表示C等次的扇形所對的圓心角的度數(shù)為360°×20%=72°,(3)畫樹狀圖,如圖所示:共有12個可能的結果,選中的兩名同學恰好是甲、乙的結果有2個,故P(選中的兩名同學恰好是甲、乙)=.點睛:此題主要考查了列表法與樹狀圖法,以及扇形統(tǒng)計圖、條形統(tǒng)計圖的應用,要熟練掌握.20、【解題分析】

先根據(jù)分式混合運算順序和運算法則化簡原式,再解方程組求得a、b的值,繼而代入計算可得.【題目詳解】原式=,=,=,解方程組得,所以原式=.【題目點撥】本題主要考查分式的化簡求值和解二元一次方程組,解題的關鍵是熟練掌握分式混合運算順序和運算法則.21、證明見解析.【解題分析】

由AD∥BC得∠ADB=∠DBC,根據(jù)已知證明△AED≌△DCB(AAS),即可解題.【題目詳解】解:∵AD∥BC∴∠ADB=∠DBC∵DC⊥BC于點C,AE⊥BD于點E∴∠C=∠AED=90°又∵DB=DA∴△AED≌△DCB(AAS)∴AE=CD【題目點撥】本題考查了三角形全等的判定和性質,屬于簡單題,證明三角形全等是解題關鍵.22、(1)圖形見解析;(2)1;(3)1.【解題分析】

(1)由A的人數(shù)及其所占百分比求得總人數(shù),總人數(shù)減去其它類別人數(shù)求得B的人數(shù)即可補全圖形;(2)根據(jù)眾數(shù)的定義求解可得;(3)用總人數(shù)乘以樣本中D和E人數(shù)占總人數(shù)的比例即可得.【題目詳解】解:(1)∵被調查的總人數(shù)為20÷20%=100(人),則輔導1個學科(B類別)的人數(shù)為100﹣(20+30+10+5)=35(人),補全圖形如下:(2)根據(jù)本次調查的數(shù)據(jù),每周參加課外輔導班的學科數(shù)的眾數(shù)是1個學科,故答案為1;(3)估計該校全體學生一周內參加課外輔導班在3個學科(含3個學科)以上的學生共有2000×=1(人),故答案為1.【題目點撥】此題主要考查了條形統(tǒng)計圖的應用以及扇形統(tǒng)計圖應用、利用樣本估計總體等知識,利用圖形得出正確信息求出樣本容量是解題關鍵.23、(1)(2)﹣1<x<0或x>1.(3)四邊形OABC是平行四邊形;理由見解析.【解題分析】

(1)設反比例函數(shù)的解析式為(k>0),然后根據(jù)條件求出A點坐標,再求出k的值,進而求出反比例函數(shù)的解析式.(2)直接由圖象得出正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍;(3)首先求出OA的長度,結合題意CB∥OA且CB=,判斷出四邊形OABC是平行四邊形,再證明OA=OC【題目詳解】解:(1)設反比例函數(shù)的解析式為(k>0)∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1.∴A(﹣1,﹣2).又∵點A在上,∴,解得k=2.,∴反比例函數(shù)的解析式為.(2)觀察圖象可知正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍為﹣1<x<0或x>1.(3)四邊形OABC是菱形.證明如下:∵A(﹣1,﹣2),∴.由題意知:CB∥OA且CB=,∴CB=OA.∴四邊形OABC是平行四邊形.∵C(2,n)在上,∴.∴C(2,1).∴.∴OC=OA.∴平行四邊形OABC是菱形.24、(1)①;(2)無變化,證明見解析;(3)①2+2+1或﹣1.【解題分析】

(1)①先判斷出DE∥CB,進而得出比例式,代值即可得出結論;②先得出DE∥BC,即可得出,,再用比例的性質即可得出結論;(2)先∠CAD=∠BAE,進而判斷出△ADC∽△AEB即可得出結論;(3)分點D在BE的延長線上和點D在BE上,先利用勾股定理求出BD,再借助(2)結論即可得出CD.【題目詳解】解:(1)①當θ=0°時,在Rt△ABC中,AC=BC=2,∴∠A=∠B=45°,AB=2,∵AD=DE=AB=,∴∠AED=∠A=45°,∴∠ADE=90°,∴DE∥CB,∴,∴,∴,故答案為,②當θ=180°時,如圖1,∵DE∥BC,∴,∴,即:,∴,故答案為;(2)當0°≤θ<360°時,的大小沒有變化,理由:∵∠CAB=∠DAE,∴∠CAD=∠BAE,∵,∴△ADC∽△AEB,∴;(3)①當點E在BA的延長線時,BE最大,在Rt△ADE中,AE=AD=2,∴BE最大=AB+AE=2+2;②如圖2,當點E在BD上時,∵∠ADE=90°,∴∠ADB=90°,在Rt△ADB中,AB=2,AD=,根據(jù)勾股定理得,BD==,∴BE=BD+DE=+,由(2)知,,∴CD=+1,如圖3,當點D在BE的延長線上時,在Rt△ADB中,AD=,AB=2,根據(jù)勾股定理得,BD==,∴BE=BD﹣DE=﹣,由(2)知,,∴CD=﹣1.故答案為+1或﹣1.【題目點撥】此題是相似形綜合題,主要考查了等腰直角三角形的性質和判定,勾股定理,相似三角形的判定和性質,比例的基本性質及分類討論的數(shù)學思想,解(1)的關鍵是得出DE∥BC,解(2)的關鍵是判斷出△ADC∽△AEB,解(3)關鍵是作出圖形求出BD,是一道中等難度的題目

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論