立方根1實(shí)數(shù) 公開(kāi)課教學(xué)設(shè)計(jì)_第1頁(yè)
立方根1實(shí)數(shù) 公開(kāi)課教學(xué)設(shè)計(jì)_第2頁(yè)
立方根1實(shí)數(shù) 公開(kāi)課教學(xué)設(shè)計(jì)_第3頁(yè)
立方根1實(shí)數(shù) 公開(kāi)課教學(xué)設(shè)計(jì)_第4頁(yè)
立方根1實(shí)數(shù) 公開(kāi)課教學(xué)設(shè)計(jì)_第5頁(yè)
已閱讀5頁(yè),還剩5頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

立方根教學(xué)目標(biāo)1、知識(shí)與技能了解立方根的概念,能夠用符號(hào)表示一個(gè)數(shù)的立方根;能用數(shù)學(xué)類比平方根的方法弄清立方根的概念,理解開(kāi)立方運(yùn)算。2、過(guò)程與方法經(jīng)歷探索立方根的過(guò)程,掌握立方根的運(yùn)算方法,并且能區(qū)別平方根與立方根。3、情感、態(tài)度與價(jià)值觀培養(yǎng)學(xué)生求同存異的數(shù)學(xué)思維,體會(huì)立方根的數(shù)學(xué)內(nèi)涵。重、難點(diǎn)與關(guān)鍵1、重點(diǎn):立方根的概念。2、難點(diǎn):立方根的概念。3、關(guān)鍵:由正方體的邊長(zhǎng)與體積的關(guān)系引出立方根運(yùn)算。轉(zhuǎn)入立方根運(yùn)算,感受立方與立方根運(yùn)算的互逆性。教學(xué)方法采用“啟發(fā)式”教學(xué)方法。教學(xué)過(guò)程一、創(chuàng)設(shè)情境,引入新知問(wèn)題:要制作一個(gè)容積為8m3的正方體形狀包裝箱,這種包裝箱邊長(zhǎng)應(yīng)該是多少?設(shè)這種包裝箱為xm,則x3這就要求一個(gè)數(shù),使它的立方等于27。因?yàn)?3=27,所以x=3。歸納:如果一個(gè)數(shù)的立方等于,這個(gè)數(shù)叫做的立方根(也叫做三次方根),即如果x3=a,那么叫做的立方根。二、小組合作,課堂探索探究根據(jù)立方根的意義填空,看看正數(shù)、0、負(fù)數(shù)的立方根各有什么特點(diǎn)?因?yàn)?,所?的立方根是(2)因?yàn)?,所以的立方根是()因?yàn)椋?的立方根是(0)因?yàn)?,所以的立方根是()一個(gè)正數(shù)有一個(gè)正的立方根0有一個(gè)立方根,是它本身一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根任何數(shù)都有唯一的立方根因?yàn)?,所以?的立方根是(一個(gè)正數(shù)有一個(gè)正的立方根0有一個(gè)立方根,是它本身一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根任何數(shù)都有唯一的立方根【總結(jié)歸納】【探究說(shuō)明】一個(gè)數(shù)的立方根,記作,讀作:“三次根號(hào)”,其中叫被開(kāi)方數(shù),3叫根指數(shù),不能省略,若省略表示平方。例如:表示27的立方根,;表示的立方根。三、范例學(xué)習(xí),應(yīng)用所學(xué)例1:求下列各式的值(1) (2)(3)— (4)解:(1);(2)=-5;(3)=;(4)=x。例2:求下列各數(shù)的立方根,它們是有理數(shù)嗎?(1)—343 (2) (3)— (4)—2解:(1)∵(—7)3=—343,∴是有理數(shù)。(2)∵()3=,∴是有理數(shù)。(3)∵(—)3=—,∴(4)對(duì)于—2這個(gè)數(shù),借助計(jì)算器求值。由于計(jì)算器檢驗(yàn)知是一個(gè)無(wú)限不循環(huán)小數(shù),是一個(gè)近似數(shù)。例3:計(jì)算例4:用計(jì)算器計(jì)算①②四、隨堂練習(xí)1、P79練習(xí)2、當(dāng)

≥0時(shí),有意義;當(dāng)為一切實(shí)數(shù)時(shí),有意義;的立方根是-2,的平方根是±2,的立方根是-2。3、解方程=1\*GB2⑴=2\*GB2⑵五、課堂總結(jié),發(fā)展?jié)撃鼙竟?jié)課學(xué)習(xí)了立方根的概念,立方根的表示方法以及怎樣求一個(gè)數(shù)的立方根,用計(jì)算器求任意數(shù)的立方根時(shí),應(yīng)先求出該數(shù)的絕對(duì)值的立方根再根據(jù)任意數(shù)的正負(fù)性確定它們的值,注意區(qū)別平方根與立方根的概念。六、布置作業(yè),專題突破課本P80習(xí)題第3、4、6、7、8、10題。教學(xué)反思

實(shí)數(shù)(1)教學(xué)目標(biāo)1、知識(shí)與技能理解無(wú)理數(shù)的概念,感受數(shù)系擴(kuò)充到實(shí)數(shù)范圍內(nèi)的實(shí)際意義。2、過(guò)程與方法經(jīng)歷實(shí)數(shù)的分類過(guò)程,掌握在實(shí)數(shù)范圍內(nèi)的運(yùn)算法則,以及相反數(shù)、倒數(shù)、絕對(duì)值的思想方法。3、情感、態(tài)度與價(jià)值觀鼓勵(lì)學(xué)生從不同角度對(duì)實(shí)數(shù)進(jìn)行分類,體會(huì)數(shù)學(xué)分類的思想,感受實(shí)數(shù)的應(yīng)用價(jià)值。重、難點(diǎn)與關(guān)鍵1、重點(diǎn):實(shí)數(shù)的概念。2、難點(diǎn):對(duì)無(wú)理數(shù)的理解。3、關(guān)鍵:第二次數(shù)系擴(kuò)充,實(shí)際上是引入無(wú)理數(shù),判定一個(gè)數(shù)是否是無(wú)理數(shù),主要是看是否是無(wú)限不循環(huán)小數(shù),或開(kāi)方開(kāi)不盡的數(shù)。教學(xué)方法采用“問(wèn)題解決”教學(xué)法,讓學(xué)生在問(wèn)題情境中領(lǐng)會(huì)新知。教學(xué)過(guò)程一、創(chuàng)設(shè)情境,導(dǎo)入新知問(wèn)題牽引:在小學(xué)學(xué)習(xí)階段,我們學(xué)習(xí)了整數(shù)、分?jǐn)?shù)和小數(shù),均為正數(shù),或0,進(jìn)入初一階段,引入負(fù)數(shù),把數(shù)的范圍擴(kuò)充到了有理數(shù),對(duì)于小數(shù)和整數(shù)均可以化為分?jǐn)?shù),如3=,7=,=,=,―=―,等等,而整數(shù)與分?jǐn)?shù)都屬于有理數(shù)。對(duì)于無(wú)限循環(huán)小數(shù),我們也可以化成分?jǐn)?shù)。如,設(shè)=x,則=10x,兩式相減有3=9x,故x==??梢?jiàn)無(wú)限循環(huán)小數(shù)都可以轉(zhuǎn)化為分?jǐn)?shù)。所以說(shuō)無(wú)限循環(huán)小數(shù)是屬于有理數(shù)。今年我們的課題是引入無(wú)理數(shù),把數(shù)系擴(kuò)充到實(shí)數(shù)。歸納發(fā)現(xiàn):上述分?jǐn)?shù)均可以將其化為循環(huán)小數(shù),而循環(huán)小數(shù)是有理數(shù),反之這些分?jǐn)?shù)也是有理數(shù),可見(jiàn)任何一個(gè)有理數(shù)都能寫成有限小數(shù)或者無(wú)限循環(huán)小數(shù)的形式,反之,任何有限小數(shù)或無(wú)限循環(huán)小數(shù)也都是有理數(shù),只要不是這兩類數(shù),就是一種新的數(shù)種。在前面我們學(xué)習(xí)了一種新數(shù)種:無(wú)限不循環(huán)小數(shù)。如=……,=…等,再如…等,借助計(jì)算器可以發(fā)現(xiàn),只要愿意一直計(jì)算下去,就永遠(yuǎn)無(wú)法停止,這種數(shù)的特征是無(wú)限的,又是不循環(huán)的小數(shù),我們稱它為無(wú)理數(shù),而有理數(shù)和無(wú)理數(shù)統(tǒng)稱為實(shí)數(shù)。二、自主探索,領(lǐng)悟內(nèi)涵整數(shù)分?jǐn)?shù)整數(shù)分?jǐn)?shù)有理數(shù)有限小數(shù)或無(wú)限循環(huán)小數(shù)實(shí)數(shù)正有理數(shù)正無(wú)理數(shù)正有理數(shù)正無(wú)理數(shù)負(fù)有理數(shù)負(fù)無(wú)理數(shù)正實(shí)數(shù)實(shí)數(shù)負(fù)實(shí)數(shù)三、拓展延伸,操作感知探究如圖所示,直徑為1個(gè)單位長(zhǎng)度的圓從原點(diǎn)沿?cái)?shù)軸向右滾動(dòng)一周,圓上的一點(diǎn)由原點(diǎn)到達(dá)點(diǎn)O′,點(diǎn)O′的坐標(biāo)是多少?總結(jié):事實(shí)上,每一個(gè)無(wú)理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)表示出來(lái),這就是說(shuō),數(shù)軸上的點(diǎn)有些表示有理數(shù),有些表示無(wú)理數(shù)。在數(shù)軸上怎樣畫出無(wú)理數(shù)呢?請(qǐng)把表示在數(shù)軸上。當(dāng)從有理數(shù)擴(kuò)充到實(shí)數(shù)以后,實(shí)數(shù)與數(shù)軸上的點(diǎn)就是一一對(duì)應(yīng)的,即每一個(gè)實(shí)數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示;反過(guò)來(lái),數(shù)軸上的每一個(gè)點(diǎn)都是表示一個(gè)實(shí)數(shù)。與有理數(shù)一樣,對(duì)于數(shù)軸上的任意兩個(gè)點(diǎn),右邊的點(diǎn)所表示的實(shí)數(shù)總比左邊的點(diǎn)表示的實(shí)數(shù)大。討論:當(dāng)數(shù)從有理數(shù)擴(kuò)充到實(shí)數(shù)以后,有理數(shù)關(guān)于相反數(shù)和絕對(duì)值的意義同樣適合于實(shí)數(shù)嗎?歸納:1、數(shù)a的相反數(shù)是-a(a為任何實(shí)數(shù));2、數(shù)a的絕對(duì)值可以表示為|a|,一個(gè)正實(shí)數(shù)的絕對(duì)值是它本身,一個(gè)負(fù)實(shí)數(shù)的絕對(duì)值是它的相反數(shù),0的絕對(duì)值是0。四、范例學(xué)習(xí),應(yīng)用所學(xué)例1把下列各數(shù)分別填入相應(yīng)的集合里:正有理數(shù){}負(fù)有理數(shù){}正無(wú)理數(shù){}負(fù)無(wú)理數(shù){}例2:求―、、、―的絕對(duì)值和它們的相反數(shù)。解:―=-2,其絕對(duì)值為2,即|―|=2,相反數(shù)為2;=―3,其絕對(duì)值為3,即||=3,相反數(shù)為3;的絕對(duì)值為,即||=,的相反數(shù)為―;―的絕對(duì)值為,即|―|=,―的相反數(shù)為。五、隨堂練習(xí),鞏固深化1、課本P86練習(xí)第1、2。2、已知四個(gè)命題,正確的有()=1\*GB2⑴有理數(shù)與無(wú)理數(shù)之和是無(wú)理數(shù)=2\*GB2⑵有理數(shù)與無(wú)理數(shù)之積是無(wú)理數(shù)=3\*GB2⑶無(wú)理數(shù)與無(wú)理數(shù)之積是無(wú)理數(shù)=4\*GB2⑷無(wú)理數(shù)與無(wú)理數(shù)之積是無(wú)理數(shù)A.1個(gè)B.2個(gè)C.3個(gè)個(gè)3、下列實(shí)數(shù)中是無(wú)理數(shù)的為()A.0B.C.D.4、=1\*GB2⑴的相反數(shù)是,絕對(duì)值是=2\*GB2⑵=3\*GB2⑶1=4\*GB2⑷若,則5、是實(shí)數(shù),則2六、課堂總結(jié),發(fā)展?jié)撃馨褦?shù)從有理數(shù)擴(kuò)充到實(shí)數(shù)以后,實(shí)數(shù)和數(shù)軸的點(diǎn)就是一一對(duì)應(yīng)的,即每一個(gè)實(shí)數(shù)都可以用數(shù)軸的一個(gè)點(diǎn)來(lái)表示;反過(guò)來(lái),數(shù)軸上的每一個(gè)點(diǎn)都可以用一個(gè)實(shí)數(shù)來(lái)表示。七、布置作業(yè)課本P86習(xí)題第1、2、3、7題。教學(xué)反思

實(shí)數(shù)(2)教學(xué)目標(biāo)1、知識(shí)與技能了解在有理數(shù)范圍內(nèi)的運(yùn)算及運(yùn)算法則,運(yùn)算性質(zhì)等在實(shí)數(shù)范圍內(nèi)仍然成立,能熟練地進(jìn)行實(shí)數(shù)運(yùn)算,在實(shí)數(shù)運(yùn)算時(shí),根據(jù)問(wèn)題的要求取近似值,轉(zhuǎn)化為有理數(shù)的運(yùn)算。2、過(guò)程與方法通過(guò)學(xué)習(xí)實(shí)數(shù)與數(shù)軸上的點(diǎn)一一對(duì)應(yīng)關(guān)系,滲透“數(shù)形結(jié)合”的數(shù)學(xué)思想。3、情感、態(tài)度與價(jià)值觀重、難點(diǎn)與關(guān)鍵重點(diǎn):實(shí)數(shù)運(yùn)算難點(diǎn):取近似值教學(xué)過(guò)程一、創(chuàng)設(shè)情景,導(dǎo)入新課復(fù)習(xí)導(dǎo)入:1、用字母來(lái)表示有理數(shù)的乘法交換律、乘法結(jié)合律、乘法分配律2、用字母表示有理數(shù)的加法交換律和結(jié)合律3、平方差公式、完全平方公式4、有理數(shù)的混合運(yùn)算順序問(wèn):利用數(shù)軸,怎樣比較兩個(gè)有理數(shù)的大?。吭跀?shù)軸上表示的數(shù),右邊的數(shù)總比左邊的數(shù)大。這個(gè)結(jié)論在實(shí)數(shù)范圍內(nèi)也成立。問(wèn):我們還有什么方法可以比較兩個(gè)實(shí)數(shù)的大小??jī)蓚€(gè)正實(shí)數(shù)的絕對(duì)值較大的值也越大,兩個(gè)負(fù)數(shù)的絕對(duì)值大的值反而小;正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于一切負(fù)數(shù)。二、范例學(xué)習(xí),應(yīng)用所學(xué)例1:比較下列各組數(shù)里兩組數(shù)的大小。(1),(2)―;— (3)2;三、合作交流,解讀探究當(dāng)數(shù)從有理數(shù)擴(kuò)充到實(shí)數(shù)以后,實(shí)數(shù)之間不僅可以進(jìn)行加、減、乘、除(除數(shù)不為0)、乘方運(yùn)算,而且正數(shù)及0可以進(jìn)行開(kāi)方運(yùn)算,任意一個(gè)實(shí)數(shù)可以進(jìn)行開(kāi)立方運(yùn)算。在進(jìn)行實(shí)數(shù)的運(yùn)算時(shí),有理數(shù)的運(yùn)算法則及運(yùn)算性質(zhì)等同樣適用。例2:計(jì)算下列各式的值:解:=1\*GB2⑴=2\*GB2⑵=1\*GB2⑴=2\*GB2⑵解:=1\*GB2⑴=2\*GB2⑵總結(jié)實(shí)數(shù)范圍內(nèi)的運(yùn)算方法及運(yùn)算順序與在有理數(shù)范圍內(nèi)都是一樣的例3:計(jì)算:(精確到)·(結(jié)果保留3個(gè)有效數(shù)字)總結(jié)在實(shí)數(shù)運(yùn)算中,當(dāng)遇到無(wú)理數(shù)并且需要求出結(jié)果的近似值時(shí),可以按照所要求的精確度用相應(yīng)的近似有限小數(shù)去代替無(wú)理數(shù),再進(jìn)行計(jì)算四、隨堂練習(xí),鞏固深化1、p86練習(xí)、4題2、計(jì)算(結(jié)果保留三個(gè)有效數(shù)字)(1) (精確到)3、的相反數(shù)是,的相反數(shù)是4、在兩個(gè)連續(xù)整數(shù)和之間,即,那么、的值是3、45、計(jì)算下列各題

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論