2024屆湖北省襄陽市三十三中中考數(shù)學(xué)對點突破模擬試卷含解析_第1頁
2024屆湖北省襄陽市三十三中中考數(shù)學(xué)對點突破模擬試卷含解析_第2頁
2024屆湖北省襄陽市三十三中中考數(shù)學(xué)對點突破模擬試卷含解析_第3頁
2024屆湖北省襄陽市三十三中中考數(shù)學(xué)對點突破模擬試卷含解析_第4頁
2024屆湖北省襄陽市三十三中中考數(shù)學(xué)對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆湖北省襄陽市三十三中中考數(shù)學(xué)對點突破模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,AB∥CD,DE⊥CE,∠1=34°,則∠DCE的度數(shù)為()A.34° B.56° C.66° D.54°2.如圖,△ABC是等腰直角三角形,∠A=90°,BC=4,點P是△ABC邊上一動點,沿B→A→C的路徑移動,過點P作PD⊥BC于點D,設(shè)BD=x,△BDP的面積為y,則下列能大致反映y與x函數(shù)關(guān)系的圖象是()A.B.C.D.3.正五邊形繞著它的中心旋轉(zhuǎn)后與它本身重合,最小的旋轉(zhuǎn)角度數(shù)是()A.36° B.54° C.72° D.108°4.下列說法:①平分弦的直徑垂直于弦;②在n次隨機實驗中,事件A出現(xiàn)m次,則事件A發(fā)生的頻率,就是事件A的概率;③各角相等的圓外切多邊形一定是正多邊形;④各角相等的圓內(nèi)接多邊形一定是正多邊形;⑤若一個事件可能發(fā)生的結(jié)果共有n種,則每一種結(jié)果發(fā)生的可能性是.其中正確的個數(shù)()A.1 B.2 C.3 D.45.下列計算正確的是()A.3a2﹣6a2=﹣3B.(﹣2a)?(﹣a)=2a2C.10a10÷2a2=5a5D.﹣(a3)2=a66.如圖,△ABC內(nèi)接于⊙O,BC為直徑,AB=8,AC=6,D是弧AB的中點,CD與AB的交點為E,則CE:DE等于()A.3:1 B.4:1 C.5:2 D.7:27.甲、乙兩人加工一批零件,甲完成240個零件與乙完成200個零件所用的時間相同,已知甲比乙每天多完成8個零件.設(shè)乙每天完成x個零件,依題意下面所列方程正確的是()A. B.C. D.8.小紅上學(xué)要經(jīng)過三個十字路口,每個路口遇到紅、綠燈的機會都相同,小紅希望小學(xué)時經(jīng)過每個路口都是綠燈,但實際這樣的機會是()A. B. C. D.9.一個三角形框架模型的三邊長分別為20厘米、30厘米、40厘米,木工要以一根長為60厘米的木條為一邊,做一個與模型三角形相似的三角形,那么另兩條邊的木條長度不符合條件的是()A.30厘米、45厘米;B.40厘米、80厘米;C.80厘米、120厘米;D.90厘米、120厘米10.甲隊修路120m與乙隊修路100m所用天數(shù)相同,已知甲隊比乙隊每天多修10m,設(shè)甲隊每天修路xm.依題意,下面所列方程正確的是A.B. C.D.11.如圖,正方形ABCD邊長為4,以BC為直徑的半圓O交對角線BD于點E,則陰影部分面積為()A.π B.π C.6﹣π D.2﹣π12.若代數(shù)式有意義,則實數(shù)x的取值范圍是()A.x=0 B.x=3 C.x≠0 D.x≠3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,已知,點為邊中點,點在線段上運動,點在線段上運動,連接,則周長的最小值為______.14.某文化商場同時賣出兩臺電子琴,每臺均賣960元,以成本計算,其中一臺盈利20%,另一臺虧本20%,則本次出售中商場是_____(請寫出盈利或虧損)_____元.15.如果m,n互為相反數(shù),那么|m+n﹣2016|=___________.16.如圖,已知直線m∥n,∠1=100°,則∠2的度數(shù)為_____.17.一個樣本為1,3,2,2,a,b,c,已知這個樣本的眾數(shù)為3,平均數(shù)為2,則這組數(shù)據(jù)的中位數(shù)為______.18.因式分解:______.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,將矩形紙片ABCD沿對角線BD折疊,使點A落在平面上的F點處,DF交BC于點E.(1)求證:△DCE≌△BFE;(2)若AB=4,tan∠ADB=,求折疊后重疊部分的面積.20.(6分)如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P是直線AC下方拋物線上的動點.(1)求拋物線的解析式;(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當(dāng)四邊形AECP的面積最大時,求點P的坐標;(3)當(dāng)點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標,若不存在,請說明理由.21.(6分)某經(jīng)銷商經(jīng)銷的冰箱二月份的售價比一月份每臺降價500元,已知賣出相同數(shù)量的冰箱一月份的銷售額為9萬元,二月份的銷售額只有8萬元.(1)二月份冰箱每臺售價為多少元?(2)為了提高利潤,該經(jīng)銷商計劃三月份再購進洗衣機進行銷售,已知洗衣機每臺進價為4000元,冰箱每臺進價為3500元,預(yù)計用不多于7.6萬元的資金購進這兩種家電共20臺,設(shè)冰箱為y臺(y≤12),請問有幾種進貨方案?(3)三月份為了促銷,該經(jīng)銷商決定在二月份售價的基礎(chǔ)上,每售出一臺冰箱再返還顧客現(xiàn)金a元,而洗衣機按每臺4400元銷售,這種情況下,若(2)中各方案獲得的利潤相同,則a應(yīng)取何值?22.(8分)某射擊隊教練為了了解隊員訓(xùn)練情況,從隊員中選取甲、乙兩名隊員進行射擊測試,相同條件下各射靶5次,成績統(tǒng)計如下:命中環(huán)數(shù)678910甲命中相應(yīng)環(huán)數(shù)的次數(shù)01310乙命中相應(yīng)環(huán)數(shù)的次數(shù)20021(1)根據(jù)上述信息可知:甲命中環(huán)數(shù)的中位數(shù)是_____環(huán),乙命中環(huán)數(shù)的眾數(shù)是______環(huán);

(2)試通過計算說明甲、乙兩人的成績誰比較穩(wěn)定?

(3)如果乙再射擊1次,命中8環(huán),那么乙射擊成績的方差會變?。ㄌ睢白兇蟆薄ⅰ白冃 被颉安蛔儭保?3.(8分)問題探究(1)如圖①,在矩形ABCD中,AB=3,BC=4,如果BC邊上存在點P,使△APD為等腰三角形,那么請畫出滿足條件的一個等腰三角形△APD,并求出此時BP的長;(2)如圖②,在△ABC中,∠ABC=60°,BC=12,AD是BC邊上的高,E、F分別為邊AB、AC的中點,當(dāng)AD=6時,BC邊上存在一點Q,使∠EQF=90°,求此時BQ的長;問題解決(3)有一山莊,它的平面圖為如圖③的五邊形ABCDE,山莊保衛(wèi)人員想在線段CD上選一點M安裝監(jiān)控裝置,用來監(jiān)視邊AB,現(xiàn)只要使∠AMB大約為60°,就可以讓監(jiān)控裝置的效果達到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,問在線段CD上是否存在點M,使∠AMB=60°?若存在,請求出符合條件的DM的長,若不存在,請說明理由.24.(10分)如圖,AB∥CD,以點A為圓心,小于AC長為半徑作圓弧,分別交AB,AC于E,F(xiàn)兩點,再分別以E,F(xiàn)為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點P,連接AP,交CD于點M,若∠ACD=110°,求∠CMA的度數(shù)______.25.(10分)圖1是一商場的推拉門,已知門的寬度米,且兩扇門的大小相同(即),將左邊的門繞門軸向里面旋轉(zhuǎn),將右邊的門繞門軸向外面旋轉(zhuǎn),其示意圖如圖2,求此時與之間的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):,,)26.(12分)已知是的函數(shù),自變量的取值范圍是的全體實數(shù),如表是與的幾組對應(yīng)值.小華根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,利用上述表格所反映出的與之間的變化規(guī)律,對該函數(shù)的圖象與性質(zhì)進行了探究.下面是小華的探究過程,請補充完整:(1)從表格中讀出,當(dāng)自變量是﹣2時,函數(shù)值是;(2)如圖,在平面直角坐標系中,描出了以上表中各對對應(yīng)值為坐標的點.根據(jù)描出的點,畫出該函數(shù)的圖象;(3)在畫出的函數(shù)圖象上標出時所對應(yīng)的點,并寫出.(4)結(jié)合函數(shù)的圖象,寫出該函數(shù)的一條性質(zhì):.27.(12分)如圖,在一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤中,指針位置固定,三個扇形的面積都相等,且分別標有數(shù)字2,3、1.(1)小明轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,指針所指扇形中的數(shù)字是奇數(shù)的概率為;(2)小明先轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄下指針所指扇形中的數(shù)字;接著再轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,再次記錄下指針所指扇形中的數(shù)字,求這兩個數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解題分析】試題分析:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故選B.考點:平行線的性質(zhì).2、B【解題分析】解:過A點作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=12BC=2,當(dāng)0≤x≤2時,如圖1,∵∠B=45°,∴PD=BD=x,∴y=12?x?x=當(dāng)2<x≤4時,如圖2,∵∠C=45°,∴PD=CD=4﹣x,∴y=12?(4﹣x)?x=-3、C【解題分析】正五邊形繞著它的中心旋轉(zhuǎn)后與它本身重合,最小的旋轉(zhuǎn)角度數(shù)是=72度,故選C.4、A【解題分析】

根據(jù)垂徑定理、頻率估計概率、圓的內(nèi)接多邊形、外切多邊形的性質(zhì)與正多邊形的定義、概率的意義逐一判斷可得.【題目詳解】①平分弦(不是直徑)的直徑垂直于弦,故此結(jié)論錯誤;②在n次隨機實驗中,事件A出現(xiàn)m次,則事件A發(fā)生的頻率,試驗次數(shù)足夠大時可近似地看做事件A的概率,故此結(jié)論錯誤;③各角相等的圓外切多邊形是正多邊形,此結(jié)論正確;④各角相等的圓內(nèi)接多邊形不一定是正多邊形,如圓內(nèi)接矩形,各角相等,但不是正多邊形,故此結(jié)論錯誤;⑤若一個事件可能發(fā)生的結(jié)果共有n種,再每種結(jié)果發(fā)生的可能性相同是,每一種結(jié)果發(fā)生的可能性是.故此結(jié)論錯誤;故選:A.【題目點撥】本題主要考查命題的真假,解題的關(guān)鍵是掌握垂徑定理、頻率估計概率、圓的內(nèi)接多邊形、外切多邊形的性質(zhì)與正多邊形的定義、概率的意義.5、B【解題分析】

根據(jù)整式的運算法則分別計算可得出結(jié)論.【題目詳解】選項A,由合并同類項法則可得3a2﹣6a2=﹣3a2,不正確;選項B,單項式乘單項式的運算可得(﹣2a)?(﹣a)=2a2,正確;選項C,根據(jù)整式的除法可得10a10÷2a2=5a8,不正確;選項D,根據(jù)冪的乘方可得﹣(a3)2=﹣a6,不正確.故答案選B.考點:合并同類項;冪的乘方與積的乘方;單項式乘單項式.6、A【解題分析】

利用垂徑定理的推論得出DO⊥AB,AF=BF,進而得出DF的長和△DEF∽△CEA,再利用相似三角形的性質(zhì)求出即可.【題目詳解】連接DO,交AB于點F,∵D是的中點,∴DO⊥AB,AF=BF,∵AB=8,∴AF=BF=4,∴FO是△ABC的中位線,AC∥DO,∵BC為直徑,AB=8,AC=6,∴BC=10,F(xiàn)O=AC=1,∴DO=5,∴DF=5-1=2,∵AC∥DO,∴△DEF∽△CEA,∴,∴==1.故選:A.【題目點撥】此題主要考查了垂徑定理的推論以及相似三角形的判定與性質(zhì),根據(jù)已知得出△DEF∽△CEA是解題關(guān)鍵.7、B【解題分析】

根據(jù)題意設(shè)出未知數(shù),根據(jù)甲所用的時間=乙所用的時間,用時間列出分式方程即可.【題目詳解】設(shè)乙每天完成x個零件,則甲每天完成(x+8)個.即得,,故選B.【題目點撥】找出甲所用的時間=乙所用的時間這個關(guān)系式是本題解題的關(guān)鍵.8、B【解題分析】分析:列舉出所有情況,看各路口都是綠燈的情況占總情況的多少即可.詳解:畫樹狀圖,得∴共有8種情況,經(jīng)過每個路口都是綠燈的有一種,∴實際這樣的機會是.故選B.點睛:此題考查了樹狀圖法求概率,樹狀圖法適用于三步或三步以上完成的事件,解題時要注意列出所有的情形.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.9、C【解題分析】當(dāng)60cm的木條與20cm是對應(yīng)邊時,那么另兩條邊的木條長度分別為90cm與120cm;當(dāng)60cm的木條與30cm是對應(yīng)邊時,那么另兩條邊的木條長度分別為40cm與80cm;當(dāng)60cm的木條與40cm是對應(yīng)邊時,那么另兩條邊的木條長度分別為30cm與45cm;所以A、B、D選項不符合題意,C選項符合題意,故選C.10、A【解題分析】分析:甲隊每天修路xm,則乙隊每天修(x-10)m,因為甲、乙兩隊所用的天數(shù)相同,所以,。故選A。11、C【解題分析】

根據(jù)題意作出合適的輔助線,可知陰影部分的面積是△BCD的面積減去△BOE和扇形OEC的面積.【題目詳解】由題意可得,BC=CD=4,∠DCB=90°,連接OE,則OE=BC,∴OE∥DC,∴∠EOB=∠DCB=90°,∴陰影部分面積為:==6-π,故選C.【題目點撥】本題考查扇形面積的計算、正方形的性質(zhì),解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.12、D【解題分析】分析:根據(jù)分式有意義的條件進行求解即可.詳解:由題意得,x﹣3≠0,解得,x≠3,故選D.點睛:此題考查了分式有意義的條件.注意:分式有意義的條件事分母不等于零,分式無意義的條件是分母等于零.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解題分析】

作梯形ABCD關(guān)于AB的軸對稱圖形,將BC'繞點C'逆時針旋轉(zhuǎn)120°,則有GE'=FE',P與Q是關(guān)于AB的對稱點,當(dāng)點F'、G、P三點在一條直線上時,△FEP的周長最小即為F'G+GE'+E'P,此時點P與點M重合,F(xiàn)'M為所求長度;過點F'作F'H⊥BC',M是BC中點,則Q是BC'中點,由已知條件∠B=90°,∠C=60°,BC=2AD=4,可得C'Q=F'C'=2,∠F'C'H=60°,所以F'H=,HC'=1,在Rt△MF'H中,即可求得F'M.【題目詳解】作梯形ABCD關(guān)于AB的軸對稱圖形,作F關(guān)于AB的對稱點G,P關(guān)于AB的對稱點Q,∴PF=GQ,將BC'繞點C'逆時針旋轉(zhuǎn)120°,Q點關(guān)于C'G的對應(yīng)點為F',∴GF'=GQ,設(shè)F'M交AB于點E',∵F關(guān)于AB的對稱點為G,∴GE'=FE',

∴當(dāng)點F'、G、P三點在一條直線上時,△FEP的周長最小即為F'G+GE'+E'P,此時點P與點M重合,∴F'M為所求長度;

過點F'作F'H⊥BC',

∵M是BC中點,

∴Q是BC'中點,

∵∠B=90°,∠C=60°,BC=2AD=4,

∴C'Q=F'C'=2,∠F'C'H=60°,

∴F'H=,HC'=1,∴MH=7,

在Rt△MF'H中,F(xiàn)'M;

∴△FEP的周長最小值為.

故答案為:.【題目點撥】本題考查了動點問題的最短距離,涉及的知識點有:勾股定理,含30度角直角三角形的性質(zhì),能夠通過軸對稱和旋轉(zhuǎn),將三角形的三條邊轉(zhuǎn)化為線段的長是解題的關(guān)鍵.14、虧損1【解題分析】

設(shè)盈利20%的電子琴的成本為x元,設(shè)虧本20%的電子琴的成本為y元,再根據(jù)(1+利潤率)×成本=售價列出方程,解方程計算出x、y的值,進而可得答案.【題目詳解】設(shè)盈利20%的電子琴的成本為x元,

x(1+20%)=960,

解得x=10;

設(shè)虧本20%的電子琴的成本為y元,

y(1-20%)=960,

解得y=1200;

∴960×2-(10+1200)=-1,

∴虧損1元,

故答案是:虧損;1.【題目點撥】考查了一元一次方程組的應(yīng)用,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,設(shè)出未知數(shù),列出方程.15、1.【解題分析】試題分析:先用相反數(shù)的意義確定出m+n=0,從而求出|m+n﹣1|,∵m,n互為相反數(shù),∴m+n=0,∴|m+n﹣1|=|﹣1|=1;故答案為1.考點:1.絕對值的意義;2.相反數(shù)的性質(zhì).16、80°.【解題分析】

如圖,已知m∥n,根據(jù)平行線的性質(zhì)可得∠1=∠3,再由平角的定義即可求得∠2的度數(shù).【題目詳解】如圖,∵m∥n,∴∠1=∠3,∵∠1=100°,∴∠3=100°,∴∠2=180°﹣100°=80°,故答案為80°.【題目點撥】本題考查了平行線的性質(zhì),熟練運用平行線的性質(zhì)是解決問題的關(guān)鍵.17、1.【解題分析】解:因為眾數(shù)為3,可設(shè)a=3,b=3,c未知,平均數(shù)=(1+3+1+1+3+3+c)÷7=1,解得c=0,將這組數(shù)據(jù)按從小到大的順序排列:0、1、1、1、3、3、3,位于最中間的一個數(shù)是1,所以中位數(shù)是1,故答案為:1.點睛:本題為統(tǒng)計題,考查平均數(shù)、眾數(shù)與中位數(shù)的意義,中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到小)重新排列后,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù),如果中位數(shù)的概念掌握得不好,不把數(shù)據(jù)按要求重新排列,就會出錯.18、【解題分析】

先提取公因式x,再對余下的多項式利用完全平方公式繼續(xù)分解.【題目詳解】xy1+1xy+x,=x(y1+1y+1),=x(y+1)1.故答案為:x(y+1)1.【題目點撥】本題考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)1【解題分析】

(1)由矩形的性質(zhì)可知∠A=∠C=90°,由翻折的性質(zhì)可知∠A=∠F=90°,從而得到∠F=∠C,依據(jù)AAS證明△DCE≌△BFE即可;(2)由△DCE≌△BFE可知:EB=DE,依據(jù)AB=4,tan∠ADB=,即可得到DC,BC的長,然后再Rt△EDC中利用勾股定理列方程,可求得BE的長,從而可求得重疊部分的面積.【題目詳解】解:(1)∵四邊形ABCD是矩形,∴∠A=∠C=90°,AB=CD,由折疊可得,∠F=∠A,BF=AB,∴BF=DC,∠F=∠C=90°,又∵∠BEF=∠DEC,∴△DCE≌△BFE;(2)∵AB=4,tan∠ADB=,∴AD=8=BC,CD=4,∵△DCE≌△BFE,∴BE=DE,設(shè)BE=DE=x,則CE=8﹣x,在Rt△CDE中,CE2+CD2=DE2,∴(8﹣x)2+42=x2,解得x=5,∴BE=5,∴S△BDE=BE×CD=×5×4=1.【題目點撥】本題考查了折疊的性質(zhì)、全等三角形的判定和性質(zhì)以及勾股定理的綜合運用,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.20、(1)拋物線的解析式為y=x2-2x+1,(2)四邊形AECP的面積的最大值是,點P(,﹣);(3)Q(4,1)或(-3,1).【解題分析】

(1)把點A,B的坐標代入拋物線的解析式中,求b,c;(2)設(shè)P(m,m2?2m+1),根據(jù)S四邊形AECP=S△AEC+S△APC,把S四邊形AECP用含m式子表示,根據(jù)二次函數(shù)的性質(zhì)求解;(3)設(shè)Q(t,1),分別求出點A,B,C,P的坐標,求出AB,BC,CA;用含t的式子表示出PQ,CQ,判斷出∠BAC=∠PCA=45°,則要分兩種情況討論,根據(jù)相似三角形的對應(yīng)邊成比例求t.【題目詳解】解:(1)將A(0,1),B(9,10)代入函數(shù)解析式得:×81+9b+c=10,c=1,解得b=?2,c=1,所以拋物線的解析式y(tǒng)=x2?2x+1;(2)∵AC∥x軸,A(0,1),∴x2?2x+1=1,解得x1=6,x2=0(舍),即C點坐標為(6,1),∵點A(0,1),點B(9,10),∴直線AB的解析式為y=x+1,設(shè)P(m,m2?2m+1),∴E(m,m+1),∴PE=m+1?(m2?2m+1)=?m2+3m.∵AC⊥PE,AC=6,∴S四邊形AECP=S△AEC+S△APC=AC?EF+AC?PF=AC?(EF+PF)=AC?EP=×6(?m2+3m)=?m2+9m.∵0<m<6,∴當(dāng)m=時,四邊形AECP的面積最大值是,此時P();(3)∵y=x2?2x+1=(x?3)2?2,P(3,?2),PF=y(tǒng)F?yp=3,CF=xF?xC=3,∴PF=CF,∴∠PCF=45°,同理可得∠EAF=45°,∴∠PCF=∠EAF,∴在直線AC上存在滿足條件的點Q,設(shè)Q(t,1)且AB=,AC=6,CP=,∵以C,P,Q為頂點的三角形與△ABC相似,①當(dāng)△CPQ∽△ABC時,CQ:AC=CP:AB,(6?t):6=,解得t=4,所以Q(4,1);②當(dāng)△CQP∽△ABC時,CQ:AB=CP:AC,(6?t)6,解得t=?3,所以Q(?3,1).綜上所述:當(dāng)點P為拋物線的頂點時,在直線AC上存在點Q,使得以C,P,Q為頂點的三角形與△ABC相似,Q點的坐標為(4,1)或(?3,1).【題目點撥】本題考查了二次函數(shù)綜合題,解(1)的關(guān)鍵是待定系數(shù)法;解(2)的關(guān)鍵是利用面積的和差得出二次函數(shù),又利用了二次函數(shù)的性質(zhì),平行于坐標軸的直線上兩點間的距離是較大的坐標減較小的坐標;解(3)的關(guān)鍵是利用相似三角形的性質(zhì)的出關(guān)于CQ的比例,要分類討論,以防遺漏.21、(1)二月份冰箱每臺售價為4000元;(2)有五種購貨方案;(3)a的值為1.【解題分析】

(1)設(shè)二月份冰箱每臺售價為x元,則一月份冰箱每臺售價為(x+500)元,根據(jù)數(shù)量=總價÷單價結(jié)合賣出相同數(shù)量的冰箱一月份的銷售額為9萬元而二月份的銷售額只有3萬元,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗后即可得出結(jié)論;(2)根據(jù)總價=單價×數(shù)量結(jié)合預(yù)計用不多于7.6萬元的資金購進這兩種家電共20臺,即可得出關(guān)于y的一元一次不等式,解之即可得出y的取值范圍,結(jié)合y≤2及y為正整數(shù),即可得出各進貨方案;(3)設(shè)總獲利為w,購進冰箱為m臺,洗衣機為(20﹣m)臺,根據(jù)總利潤=單臺利潤×購進數(shù)量,即可得出w關(guān)于m的函數(shù)關(guān)系式,由w為定值即可求出a的值.【題目詳解】(1)設(shè)二月份冰箱每臺售價為x元,則一月份冰箱每臺售價為(x+500)元,根據(jù)題意,得:=,解得:x=4000,經(jīng)檢驗,x=4000是原方程的根.答:二月份冰箱每臺售價為4000元.(2)根據(jù)題意,得:3500y+4000(20﹣y)≤76000,解得:y≥3,∵y≤2且y為整數(shù),∴y=3,9,10,11,2.∴洗衣機的臺數(shù)為:2,11,10,9,3.∴有五種購貨方案.(3)設(shè)總獲利為w,購進冰箱為m臺,洗衣機為(20﹣m)臺,根據(jù)題意,得:w=(4000﹣3500﹣a)m+(4400﹣4000)(20﹣m)=(1﹣a)m+3000,∵(2)中的各方案利潤相同,∴1﹣a=0,∴a=1.答:a的值為1.【題目點撥】本題考查了分式方程的應(yīng)用以及一元一次不等式的應(yīng)用,解題的關(guān)鍵是:(1)找準等量關(guān)系,正確列出分式方程;(2)根據(jù)各數(shù)量間的關(guān)系,正確列出一元一次不等式;(3)利用總利潤=單臺利潤×購進數(shù)量,找出w關(guān)于m的函數(shù)關(guān)系式.22、(1)8,6和9;(2)甲的成績比較穩(wěn)定;(3)變小【解題分析】

(1)根據(jù)眾數(shù)、中位數(shù)的定義求解即可;

(2)根據(jù)平均數(shù)的定義先求出甲和乙的平均數(shù),再根據(jù)方差公式求出甲和乙的方差,然后進行比較,即可得出答案;

(3)根據(jù)方差公式進行求解即可.【題目詳解】解:(1)把甲命中環(huán)數(shù)從小到大排列為7,8,8,8,9,最中間的數(shù)是8,則中位數(shù)是8;

在乙命中環(huán)數(shù)中,6和9都出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則乙命中環(huán)數(shù)的眾數(shù)是6和9;

故答案為8,6和9;

(2)甲的平均數(shù)是:(7+8+8+8+9)÷5=8,

則甲的方差是:[(7-8)2+3(8-8)2+(9-8)2]=0.4,

乙的平均數(shù)是:(6+6+9+9+10)÷5=8,

則甲的方差是:[2(6-8)2+2(9-8)2+(10-8)2]=2.8,

所以甲的成績比較穩(wěn)定;

(3)如果乙再射擊1次,命中8環(huán),那么乙的射擊成績的方差變?。?/p>

故答案為變?。绢}目點撥】本題考查了方差:一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù),叫做這組數(shù)據(jù)的方差.方差通常用s2來表示,計算公式是:s2=[(x1-)2+(x2-)2+…+(xn-)2];方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越??;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.也考查了算術(shù)平均數(shù)、中位數(shù)和眾數(shù).23、(1)1;2-;;(1)4+;(4)(200-25-40)米.【解題分析】

(1)由于△PAD是等腰三角形,底邊不定,需三種情況討論,運用三角形全等、矩形的性質(zhì)、勾股定理等知識即可解決問題.(1)以EF為直徑作⊙O,易證⊙O與BC相切,從而得到符合條件的點Q唯一,然后通過添加輔助線,借助于正方形、特殊角的三角函數(shù)值等知識即可求出BQ長.(4)要滿足∠AMB=40°,可構(gòu)造以AB為邊的等邊三角形的外接圓,該圓與線段CD的交點就是滿足條件的點,然后借助于等邊三角形的性質(zhì)、特殊角的三角函數(shù)值等知識,就可算出符合條件的DM長.【題目詳解】(1)①作AD的垂直平分線交BC于點P,如圖①,則PA=PD.∴△PAD是等腰三角形.∵四邊形ABCD是矩形,∴AB=DC,∠B=∠C=90°.∵PA=PD,AB=DC,∴Rt△ABP≌Rt△DCP(HL).∴BP=CP.∵BC=2,∴BP=CP=1.②以點D為圓心,AD為半徑畫弧,交BC于點P′,如圖①,則DA=DP′.∴△P′AD是等腰三角形.∵四邊形ABCD是矩形,∴AD=BC,AB=DC,∠C=90°.∵AB=4,BC=2,∴DC=4,DP′=2.∴CP′==.∴BP′=2-.③點A為圓心,AD為半徑畫弧,交BC于點P″,如圖①,則AD=AP″.∴△P″AD是等腰三角形.同理可得:BP″=.綜上所述:在等腰三角形△ADP中,若PA=PD,則BP=1;若DP=DA,則BP=2-;若AP=AD,則BP=.(1)∵E、F分別為邊AB、AC的中點,∴EF∥BC,EF=BC.∵BC=11,∴EF=4.以EF為直徑作⊙O,過點O作OQ⊥BC,垂足為Q,連接EQ、FQ,如圖②.∵AD⊥BC,AD=4,∴EF與BC之間的距離為4.∴OQ=4∴OQ=OE=4.∴⊙O與BC相切,切點為Q.∵EF為⊙O的直徑,∴∠EQF=90°.過點E作EG⊥BC,垂足為G,如圖②.∵EG⊥BC,OQ⊥BC,∴EG∥OQ.∵EO∥GQ,EG∥OQ,∠EGQ=90°,OE=OQ,∴四邊形OEGQ是正方形.∴GQ=EO=4,EG=OQ=4.∵∠B=40°,∠EGB=90°,EG=4,∴BG=.∴BQ=GQ+BG=4+.∴當(dāng)∠EQF=90°時,BQ的長為4+.(4)在線段CD上存在點M,使∠AMB=40°.理由如下:以AB為邊,在AB的右側(cè)作等邊三角形ABG,作GP⊥AB,垂足為P,作AK⊥BG,垂足為K.設(shè)GP與AK交于點O,以點O為圓心,OA為半徑作⊙O,過點O作OH⊥CD,垂足為H,如圖③.則⊙O是△ABG的外接圓,∵△ABG是等邊三角形,GP⊥AB,∴AP=PB=AB.∵AB=170,∴AP=145.∵ED=185,∴OH=185-145=6.∵△ABG是等邊三角形,AK⊥BG,∴∠BAK=∠GAK=40°.∴OP=AP?tan40°=145×=25.∴OA=1OP=90.∴OH<OA.∴⊙O與CD相交,設(shè)交點為M,連接MA、MB,如圖③.∴∠AMB=∠AGB=40°,OM=OA=90..∵OH⊥CD,OH=6,OM=90,∴HM==40.∵AE=200,OP=25,∴DH=200-25.若點M在點H的左邊,則DM=DH+HM=200-25+40.∵200-25+40>420,∴DM>CD.∴點M不在線段CD上,應(yīng)舍去.若點M在點H的右邊,則DM=DH-HM=200-25-40.∵200-25-40<420,∴DM<CD.∴點M在線段CD上.綜上所述:在線段CD上存在唯一的點M,使∠AMB=40°,此時DM的長為(200-25-40)米.【題目點撥】本題考查了垂直平分線的性質(zhì)、矩形的性質(zhì)、等邊三角形的性質(zhì)、正方形的判定與性質(zhì)、直線與圓的位置關(guān)系、圓周角定理、三角形的中位線定理、全等三角形的判定與性質(zhì)、勾股定理、特殊角的三角函數(shù)值等知識,考查了操作、探究等能力,綜合性非常強.而構(gòu)造等邊三角形及其外接圓是解決本題的關(guān)鍵.24、∠CMA=35°.【解題分析】

根據(jù)兩直線平行,同旁內(nèi)角互補得出,再根據(jù)是的平分線,即可得出的度數(shù),再由兩直線平行,內(nèi)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論