河北省廊坊市安次區(qū)重點中學2024屆中考數(shù)學模擬精編試卷含解析_第1頁
河北省廊坊市安次區(qū)重點中學2024屆中考數(shù)學模擬精編試卷含解析_第2頁
河北省廊坊市安次區(qū)重點中學2024屆中考數(shù)學模擬精編試卷含解析_第3頁
河北省廊坊市安次區(qū)重點中學2024屆中考數(shù)學模擬精編試卷含解析_第4頁
河北省廊坊市安次區(qū)重點中學2024屆中考數(shù)學模擬精編試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

河北省廊坊市安次區(qū)重點中學2024屆中考數(shù)學模擬精編試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在矩形ABCD中,AB=5,BC=7,點E為BC上一動點,把△ABE沿AE折疊,當點B的對應點B′落在∠ADC的角平分線上時,則點B′到BC的距離為()A.1或2 B.2或3 C.3或4 D.4或52.有一組數(shù)據(jù):3,4,5,6,6,則這組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)分別是()A.4.8,6,6 B.5,5,5 C.4.8,6,5 D.5,6,63.如圖,A、B、C、D四個點均在⊙O上,∠AOD=50°,AO∥DC,則∠B的度數(shù)為()A.50°B.55°C.60°D.65°4.有理數(shù)a,b,c,d在數(shù)軸上的對應點的位置如圖所示,則正確的結論是()A.a(chǎn)>﹣4 B.bd>0 C.|a|>|b| D.b+c>05.我市某小區(qū)開展了“節(jié)約用水為環(huán)保作貢獻”的活動,為了解居民用水情況,在小區(qū)隨機抽查了10戶家庭的月用水量,結果如下表:月用水量(噸)8910戶數(shù)262則關于這10戶家庭的月用水量,下列說法錯誤的是()A.方差是4 B.極差是2 C.平均數(shù)是9 D.眾數(shù)是96.已知拋物線y=ax2+bx+c與x軸交于(x1,0)、(x2,0)兩點,且0<x1<1,1<x2<2與y軸交于(0,-2),下列結論:①2a+b>1;②a+b<2;③3a+b>0;④a<-1,其中正確結論的個數(shù)為()A.1個 B.2個 C.3個 D.4個7.下列運算正確的是()A.a(chǎn)2?a4=a8 B.2a2+a2=3a4 C.a(chǎn)6÷a2=a3 D.(ab2)3=a3b68.某種微生物半徑約為0.00000637米,該數(shù)字用科學記數(shù)法可表示為()A.0.637×10﹣5B.6.37×10﹣6C.63.7×10﹣7D.6.37×10﹣79.2017年揚中地區(qū)生產(chǎn)總值約為546億元,將546億用科學記數(shù)法表示為()A.5.46×108 B.5.46×109 C.5.46×1010 D.5.46×101110.在Rt△ABC中,∠C=90°,那么sin∠B等于()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如果當a≠0,b≠0,且a≠b時,將直線y=ax+b和直線y=bx+a稱為一對“對偶直線”,把它們的公共點稱為該對“對偶直線”的“對偶點”,那么請寫出“對偶點”為(1,4)的一對“對偶直線”:______.12.對于實數(shù)a,b,定義運算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=1.若(x+1)※(x﹣2)=6,則x的值為_____.13.已知矩形ABCD,AD>AB,以矩形ABCD的一邊為邊畫等腰三角形,使得它的第三個頂點在矩形ABCD的其他邊上,則可以畫出的不同的等腰三角形的個數(shù)為_______________.14.因式分解:.15.如圖,點M、N分別在∠AOB的邊OA、OB上,將∠AOB沿直線MN翻折,設點O落在點P處,如果當OM=4,ON=3時,點O、P的距離為4,那么折痕MN的長為______.16.一次函數(shù)y=kx+3的圖象與坐標軸的兩個交點之間的距離為5,則k的值為______.17.如圖,在△ABC中,AB=AC=2,∠BAC=120°,點D、E都在邊BC上,∠DAE=60°.若BD=2CE,則DE的長為________.三、解答題(共7小題,滿分69分)18.(10分)如圖,△ABC,△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,點E在AB上,求證:△CDA≌△CEB.19.(5分)(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)(2)(m﹣1﹣).20.(8分)新農(nóng)村社區(qū)改造中,有一部分樓盤要對外銷售.某樓盤共23層,銷售價格如下:第八層樓房售價為4000元/米2,從第八層起每上升一層,每平方米的售價提高50元;反之,樓層每下降一層,每平方米的售價降低30元,已知該樓盤每套房面積均為120米2.若購買者一次性付清所有房款,開發(fā)商有兩種優(yōu)惠方案:降價8%,另外每套房贈送a元裝修基金;降價10%,沒有其他贈送.請寫出售價y(元/米2)與樓層x(1≤x≤23,x取整數(shù))之間的函數(shù)表達式;老王要購買第十六層的一套房,若他一次性付清所有房款,請幫他計算哪種優(yōu)惠方案更加合算.21.(10分)已知關于x的一元二次方程.求證:方程有兩個不相等的實數(shù)根;如果方程的兩實根為,,且,求m的值.22.(10分)如圖,B、E、C、F在同一直線上,AB=DE,BE=CF,∠B=∠DEF,求證:AC=DF.23.(12分)某品牌牛奶供應商提供A,B,C,D四種不同口味的牛奶供學生飲用.某校為了了解學生對不同口味的牛奶的喜好,對全校訂牛奶的學生進行了隨機調(diào)查,并根據(jù)調(diào)查結果繪制了如下兩幅不完整的統(tǒng)計圖.根據(jù)統(tǒng)計圖的信息解決下列問題:本次調(diào)查的學生有多少人?補全上面的條形統(tǒng)計圖;扇形統(tǒng)計圖中C對應的中心角度數(shù)是;若該校有600名學生訂了該品牌的牛奶,每名學生每天只訂一盒牛奶,要使學生能喝到自己喜歡的牛奶,則該牛奶供應商送往該校的牛奶中,A,B口味的牛奶共約多少盒?24.(14分)2013年3月,某煤礦發(fā)生瓦斯爆炸,該地救援隊立即趕赴現(xiàn)場進行救援,救援隊利用生命探測儀在地面A、B兩個探測點探測到C處有生命跡象.已知A、B兩點相距4米,探測線與地面的夾角分別是30°和45°,試確定生命所在點C的深度.(精確到0.1米,參考數(shù)據(jù):)

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解題分析】

連接B′D,過點B′作B′M⊥AD于M.設DM=B′M=x,則AM=7-x,根據(jù)等腰直角三角形的性質(zhì)和折疊的性質(zhì)得到:(7-x)2=25-x2,通過解方程求得x的值,易得點B′到BC的距離.【題目詳解】解:如圖,連接B′D,過點B′作B′M⊥AD于M,∵點B的對應點B′落在∠ADC的角平分線上,∴設DM=B′M=x,則AM=7﹣x,又由折疊的性質(zhì)知AB=AB′=5,∴在直角△AMB′中,由勾股定理得到:,即,解得x=3或x=4,則點B′到BC的距離為2或1.故選A.【題目點撥】本題考查的是翻折變換的性質(zhì),掌握翻折變換是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等是解題的關鍵.2、C【解題分析】

解:在這一組數(shù)據(jù)中6是出現(xiàn)次數(shù)最多的,故眾數(shù)是6;而將這組數(shù)據(jù)從小到大的順序排列3,4,5,6,6,處于中間位置的數(shù)是5,平均數(shù)是:(3+4+5+6+6)÷5=4.8,故選C.【題目點撥】本題考查眾數(shù);算術平均數(shù);中位數(shù).3、D【解題分析】試題分析:連接OC,根據(jù)平行可得:∠ODC=∠AOD=50°,則∠DOC=80°,則∠AOC=130°,根據(jù)同弧所對的圓周角等于圓心角度數(shù)的一半可得:∠B=130°÷2=65°.考點:圓的基本性質(zhì)4、C【解題分析】

根據(jù)數(shù)軸上點的位置關系,可得a,b,c,d的大小,根據(jù)有理數(shù)的運算,絕對值的性質(zhì),可得答案.【題目詳解】解:由數(shù)軸上點的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合題意;B、bd<0,故B不符合題意;C、∵|a|>4,|b|<2,∴|a|>|b|,故C符合題意;D、b+c<0,故D不符合題意;故選:C.【題目點撥】本題考查了有理數(shù)大小的比較、有理數(shù)的運算,絕對值的性質(zhì),熟練掌握相關的知識是解題的關鍵5、A【解題分析】分析:根據(jù)極差=最大值-最小值;平均數(shù)指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù);一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù),以及方差公式S2=[(x1-)2+(x2-)2+…+(xn-)2],分別進行計算可得答案.詳解:極差:10-8=2,平均數(shù):(8×2+9×6+10×2)÷10=9,眾數(shù)為9,方差:S2=[(8-9)2×2+(9-9)2×6+(10-9)2×2]=0.4,故選A.點睛:此題主要考查了極差、眾數(shù)、平均數(shù)、方差,關鍵是掌握各知識點的計算方法.6、A【解題分析】

如圖,且圖像與y軸交于點,可知該拋物線的開口向下,即,①當時,故①錯誤.②由圖像可知,當時,∴∴故②錯誤.③∵∴,又∵,∴,∴,∴,故③錯誤;④∵,,又∵,∴.故④正確.故答案選A.【題目點撥】本題考查二次函數(shù)系數(shù)符號的確定由拋物線的開口方向、對稱軸和拋物線與坐標軸的交點確定.7、D【解題分析】根據(jù)同底數(shù)冪的乘法,合并同類項,同底數(shù)冪的除法,冪的乘方與積的乘方運算法則逐一計算作出判斷:A、a2?a4=a6,故此選項錯誤;B、2a2+a2=3a2,故此選項錯誤;C、a6÷a2=a4,故此選項錯誤;D、(ab2)3=a3b6,故此選項正確..故選D.考點:同底數(shù)冪的乘法,合并同類項,同底數(shù)冪的除法,冪的乘方與積的乘方.8、B【解題分析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【題目詳解】0.00000637的小數(shù)點向右移動6位得到6.37所以0.00000637用科學記數(shù)法表示為6.37×10﹣6,故選B.【題目點撥】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.9、C【解題分析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.【題目詳解】解:將546億用科學記數(shù)法表示為:5.46×1010,故本題選C.【題目點撥】本題考查的是科學計數(shù)法,熟練掌握它的定義是解題的關鍵.10、A【解題分析】

根據(jù)銳角三角函數(shù)的定義得出sinB等于∠B的對邊除以斜邊,即可得出答案.【題目詳解】根據(jù)在△ABC中,∠C=90°,那么sinB==,故答案選A.【題目點撥】本題考查的知識點是銳角三角函數(shù)的定義,解題的關鍵是熟練的掌握銳角三角函數(shù)的定義.二、填空題(共7小題,每小題3分,滿分21分)11、【解題分析】

把(1,4)代入兩函數(shù)表達式可得:a+b=4,再根據(jù)“對偶直線”的定義,即可確定a、b的值.【題目詳解】把(1,4)代入得:a+b=4又因為,,且,所以當a=1是b=3所以“對偶點”為(1,4)的一對“對偶直線”可以是:故答案為【題目點撥】此題為新定義題型,關鍵是理解新定義,并按照新定義的要求解答.12、2【解題分析】

根據(jù)新定義運算對式子進行變形得到關于x的方程,解方程即可得解.【題目詳解】由題意得,(x+2)2﹣(x+2)(x﹣2)=6,整理得,3x+3=6,解得,x=2,故答案為2.【題目點撥】本題考查了解方程,涉及到完全平方公式、多項式乘法的運算等,根據(jù)題意正確得到方程是解題的關鍵.13、8【解題分析】

根據(jù)題意作出圖形即可得出答案,【題目詳解】如圖,AD>AB,△CDE1,△ABE2,△ABE3,△BCE4,△CDE5,△ABE6,△ADE7,△CDE8,為等腰三角形,故有8個滿足題意得點.【題目點撥】此題主要考查矩形的對稱性,解題的關鍵是根據(jù)題意作出圖形.14、;【解題分析】

根據(jù)所給多項式的系數(shù)特點,可以用十字相乘法進行因式分解.【題目詳解】x2﹣x﹣12=(x﹣4)(x+3).故答案為(x﹣4)(x+3).15、【解題分析】

由折疊的性質(zhì)可得MN⊥OP,EO=EP=2,由勾股定理可求ME,NE的長,即可求MN的長.【題目詳解】設MN與OP交于點E,

∵點O、P的距離為4,

∴OP=4

∵折疊

∴MN⊥OP,EO=EP=2,

在Rt△OME中,ME=在Rt△ONE中,NE=∴MN=ME-NE=2-故答案為2-【題目點撥】本題考查了翻折變換,勾股定理,利用勾股定理求線段的長度是本題的關鍵.16、【解題分析】

首先求出一次函數(shù)y=kx+3與y軸的交點坐標;由于函數(shù)與x軸的交點的縱坐標是0,可以設橫坐標是a,然后利用勾股定理求出a的值;再把(a,0)代入一次函數(shù)的解析式y(tǒng)=kx+3,從而求出k的值.【題目詳解】在y=kx+3中令x=0,得y=3,則函數(shù)與y軸的交點坐標是:(0,3);設函數(shù)與x軸的交點坐標是(a,0),根據(jù)勾股定理得到a2+32=25,解得a=±4;當a=4時,把(4,0)代入y=kx+3,得k=;當a=-4時,把(-4,0)代入y=kx+3,得k=;故k的值為或【題目點撥】考點:本體考查的是根據(jù)待定系數(shù)法求一次函數(shù)解析式解決本題的關鍵是求出函數(shù)與y軸的交點坐標,然后根據(jù)勾股定理求得函數(shù)與x軸的交點坐標,進而求出k的值.17、1-1.【解題分析】

將△ABD繞點A逆時針旋轉120°得到△ACF,取CF的中點G,連接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=10°,根據(jù)旋轉的性質(zhì)可得出∠ECG=60°,結合CF=BD=2CE可得出△CEG為等邊三角形,進而得出△CEF為直角三角形,通過解直角三角形求出BC的長度以及證明全等找出DE=FE,設EC=x,則BD=CF=2x,DE=FE=6-1x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6-1x=x可求出x以及FE的值,此題得解.【題目詳解】將△ABD繞點A逆時針旋轉120°得到△ACF,取CF的中點G,連接EF、EG,如圖所示.∵AB=AC=2,∠BAC=120°,∴∠ACB=∠B=∠ACF=10°,∴∠ECG=60°.∵CF=BD=2CE,∴CG=CE,∴△CEG為等邊三角形,∴EG=CG=FG,∴∠EFG=∠FEG=∠CGE=10°,∴△CEF為直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.設EC=x,則BD=CF=2x,DE=FE=6-1x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,EF==x,∴6-1x=x,x=1-,∴DE=x=1-1.故答案為:1-1.【題目點撥】本題考查了全等三角形的判定與性質(zhì)、勾股定理以及旋轉的性質(zhì),通過勾股定理找出方程是解題的關鍵.三、解答題(共7小題,滿分69分)18、見解析.【解題分析】試題分析:根據(jù)等腰直角三角形的性質(zhì)得出CE=CD,BC=AC,再利用全等三角形的判定證明即可.試題解析:證明:∵△ABC、△CDE均為等腰直角三角形,∠ACB=∠DCE=90°,∴CE=CD,BC=AC,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE,∴∠ECB=∠DCA,在△CDA與△CEB中,BC=AC∠ECB=∠DAC∴△CDA≌△CEB.考點:全等三角形的判定;等腰直角三角形.19、(1);(2)【解題分析】試題分析:(1)先去括號,再合并同類項即可;(2)先計算括號里的,再將除法轉換在乘法計算.試題解析:(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)=a2﹣2ab+b2﹣a2+2ab+4a2﹣b2=4a2;(2).====.20、(1);(2)當每套房贈送的裝修基金多于10560元時,選擇方案一合算;當每套房贈送的裝修基金等于10560元時,兩種方案一樣;當每套房贈送的裝修基金少于10560元時,選擇方案二合算.【解題分析】

解:(1)當1≤x≤8時,每平方米的售價應為:y=4000﹣(8﹣x)×30="30x+3760"(元/平方米)當9≤x≤23時,每平方米的售價應為:y=4000+(x﹣8)×50=50x+3600(元/平方米).∴(2)第十六層樓房的每平方米的價格為:50×16+3600=4400(元/平方米),按照方案一所交房款為:W1=4400×120×(1﹣8%)﹣a=485760﹣a(元),按照方案二所交房款為:W2=4400×120×(1﹣10%)=475200(元),當W1>W(wǎng)2時,即485760﹣a>475200,解得:0<a<10560,當W1<W2時,即485760﹣a<475200,解得:a>10560,∴當0<a<10560時,方案二合算;當a>10560時,方案一合算.【題目點撥】本題考查的是用一次函數(shù)解決實際問題,讀懂題目信息,找出數(shù)量關系表示出各樓層的單價以及是交房款的關系式是解題的關鍵.21、(1)證明見解析(1)1或1【解題分析】試題分析:(1)要證明方程有兩個不相等的實數(shù)根,只要證明原來的一元二次方程的△的值大于0即可;(1)根據(jù)根與系數(shù)的關系可以得到關于m的方程,從而可以求得m的值.試題解析:(1)證明:∵,∴△=[﹣(m﹣3)]1﹣4×1×(﹣m)=m1﹣1m+9=(m﹣1)1+8>0,∴方程有兩個不相等的實數(shù)根;(1)∵,方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論