版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2023年云南省保山市高三單招數(shù)學自考測試卷題庫(含答案)學校:________班級:________姓名:________考號:________
一、單選題(50題)1.設f(x)=2x+5,則f(2)=()
A.7B.8C.9D.10
2.已知集合A={2,4,6},B={6,a,2a},且A=B,則a的值為()
A.2B.4C.6D.8
3.圓x2+y2-4x+4y+6=0截直線x-y-5=0所得弦長等于()
A.√6B.1C.5D.5√2/2
4.拋物線y2=4x上的一點P至焦點F的距離為3,則P到軸y的距離為()
A.4B.3C.2D.1
5.下列函數(shù)在區(qū)間(0,+∞)上為減函數(shù)的是()
A.y=3x-1B.f(x)=log?xC.g(x)=(1/2)^xD.A(x)=sinx
6.已知頂點在原點,準線方程x=4的拋物線標準方程()
A.y2=-16xB.y2=8xC.y2=16xD.y2=-8x
7.在△ABC中,角A,B,C所對應邊為a,b,c,∠A=45°,∠C=30°,a=2,則c=()
A.1B.2C.√2D.2√2
8.在等差數(shù)列(an)中,a1=-33,d=6,使前n項和Sn取得最小值的n=()
A.5B.6C.7D.8
9.雙曲線x2/10+y2/2=1的焦距為()
A.2√2B.2√3C.4√2D.4√3
10.不等式|x-5|≤3的整數(shù)解的個數(shù)有()個。
A.5B.6C.7D.8
11.若向量a,b,c滿足a∥b且a⊥c,則c·(a+2b)=()
A.4B.3C.2D.0
12.設定義在R上的函數(shù)y=f(x)是奇函數(shù),f(x)在區(qū)間(0,+∞)上為增函數(shù),則f(2),f(4),-f(-3)之間的大小關(guān)系是()
A.f(2)<-f(-3)
B.f(2)<f(4)<-f(-3)
C.-f(-3)<f(4)
D.f(4)<f(2)<-f(-3)
13.雙曲線(x2/17)-(y2/8)=1的右焦點的坐標為()
A.(0,5)B.(0,-5)C.(5,0)D.(-5,0)
14.已知函數(shù)f(x)=|x|,則它是()
A.奇函數(shù)B.偶函數(shù)C.既是奇函數(shù)又是偶函數(shù)D.無法判斷
15.“|x-1|<2成立”是“x(x-3)<0成立”的(
)
A.充分而不必要條件B.充分而不必要條件C.充分必要條件D.既不充分也不必要條件
16.在等差數(shù)列{an}中,a1=2,a3+a5=10,則a7=()
A.5B.8C.10D.12
17.已知圓x2+y2=a與直線z+y-2=0相切,則a=()
A.2√2B.2C.3D.4
18.過點(-2,1)且平行于直線2x-y+1=0的直線方程為()
A.2x+y-1=0B.2x-y+5=0C.x-2y-3=0D.x-2y+5=0
19.已知{an}為等差數(shù)列,a1+a3+a5=105,a2+a4+a6=99,則a20等于()
A.-1B.1C.3D.7
20.若函數(shù)f(x)=3x2+bx-1(b∈R)是偶函數(shù),則f(-1)=()
A.4B.-4C.2D.-2
21.橢圓x2/2+y2=1的焦距為()
A.1B.2C.√3D.3
22.cos70°cos50°-sin70°sin50°=()
A.1/2B.-1/2C.√3/2D.-√3/2
23.已知點A(-2,2),B(1,5),則線段AB的中點坐標為()
A.(-1,7)B.(3/2,3/2)C.(-3/2,-3/2)D.(-1/2,7/2)
24.為了解某地區(qū)的中小學生視力情況,擬從該地區(qū)的中小學生中抽取部分學生進行調(diào)查,事先已了解到該地區(qū)小學.初中.高中三個學段學生的視力情況有較大差異,而男女生視力情況差異不大,在下列抽樣方法中,最合理的抽樣方法是()
A.簡單隨機抽樣B.簡單隨機抽樣C.按學段分層抽樣D.系統(tǒng)抽樣
25.在△ABC中,內(nèi)角A,B滿足sinAsinB=cosAcosB,則△ABC是()
A.等邊三角形B.鈍角三角形C.非等邊銳角三角形D.直角三角形
26.不等式(x-1)(x-2)<2的解集是()
A.{x∣x<3}B.{x∣x<0}C.{x∣0<x3}
27.(1-x3)(1+x)^10展開式中,x?的系數(shù)是()
A.?297B.?252C.297D.207
28.函數(shù)f(x)=x2-2x-3()
A.在(-∞,2)內(nèi)為增函數(shù)
B.在(-∞,1)內(nèi)為增函數(shù)
C.在(1,+∞)內(nèi)為減函數(shù)
D.在(1,+∞)內(nèi)為增函數(shù)
29.從甲地到乙地有3條路線,從乙地到丙地有4條路線,則從甲地經(jīng)乙地到丙地的不同路線共有()
A.3種B.4種C.7種D.12種
30.等差數(shù)列{an}的前5項和為5,a2=0則數(shù)列的公差為()
A.1B.2C.3D.4
31.函數(shù)y=4x2的單調(diào)遞增區(qū)間是().
A.(0,+∞)B.(1/2,+∞)C.(-∞,0)D.(-∞,-1/2)
32.不等式x2-3x-4≤0的解集是()
A.[-4,1]B.[-1,4]C.(-∞,-l]U[4,+∞)D.(-∞,-4]U[1,+∞)
33.已知α∈(Π/2,Π),cos(Π-α)=√3/2,則tanα等于()
A.-√3/3B.√3/3C.-√3D.√3
34.從2,3,5,7四個數(shù)中任取一個數(shù),取到奇數(shù)的概率為()
A.1/4B.1/2C.1/3D.3/4
35.已知向量a=(2,1),b=(3,5),則|2a一b|=
A.2B.√10C.√5D.2√2
36.4位同學每人從甲、乙、丙3門課程中選修1門,則恰有2人選修課程甲的不同選法共有()
A.12種B.24種C.30種D.36種
37.某射擊運動員的第一次打靶成績?yōu)?,8,9,8,7第二次打靶成績?yōu)?,8,9,9,7,則該名運動員打靶成績的穩(wěn)定性為()
A.一樣穩(wěn)定B.第一次穩(wěn)定C.第二次穩(wěn)定D.無法確定
38.定義在R上的函數(shù)f(x)是奇函數(shù)又是以2為周期的周期函數(shù),則f(1)+f(4)+f(7)等于()
A.-1B.0C.1D.4
39.下列各角中,與330°的終邊相同的是()
A.570°B.150°C.?150°D.?390°
40.函數(shù)f(x)=ln(2-x)的定義域是()
A.[-2,2]B.(-2,2)C.(-∞,2)D.(-2,+∞)
41.袋中有除顏色外完全相同的2紅球,2個白球,從袋中摸出兩球,則兩個都是紅球的概率是()
A.1/6B.1/3C.1/2D.2/3
42.樣本5,4,6,7,3的平均數(shù)和標準差為()
A.5和2B.5和√2C.6和3D.6和√3
43.已知函數(shù)f(x)=x2-2x+b(b為實數(shù))則下列各式中成立的是()
A.f(1)<f(0)
B.f(0)<f(1)
C.f(0)<f(4)
D.f(1)<f(4)
44.已知圓錐曲線母線長為5,底面周長為6π,則圓錐的體積是().
A.6πB.8πC.10πD.12π
45.在一個口袋中有2個白球和3個黑球,從中任意摸出2個球,則至少摸出1個黑球的概率是()
A.3/7B.9/10C.1/5D.1/6
46.過點A(-1,1)且與直線l:x-2y+6=0垂直的直線方程為()
A.2x-y-1=0B.x-2y-1=0C.x+2y+1=0D.2x+y+1=0
47.同時擲兩枚骰子,所得點數(shù)之積為12的概率為()
A.1/12B.1/4C.1/9D.1/6
48.設命題p:x>3,命題q:x>5,則()
A.p是q的充分條件但不是q的必要條件
B.p是q的必要條件但不是q的充分條件
C.p是q的充要條件
D.p不是q的充分條件也不是q的必要條件
49.若等差數(shù)列{an}的前n項和Sn=n2+a(a∈R),則a=()
A.-1B.2C.1D.0
50.某工廠生產(chǎn)A、B、C三種不同型號的產(chǎn)品,產(chǎn)品的數(shù)量之比依次為7:3:5,現(xiàn)在用分層抽樣的方法抽出容量為n的樣本,樣本中A型產(chǎn)品有42件則本容量n為()
A.80B.90C.126D.210
二、填空題(20題)51.甲乙兩人比賽飛鏢,兩人所得平均環(huán)數(shù)相同,其中甲所得環(huán)數(shù)的方差為15,乙所得的環(huán)數(shù)如下:0,1,5,9,10,那么成績較為穩(wěn)定的是________。
52.從1到40這40個自然數(shù)中任取一個,是3的倍數(shù)的概率是()
53.設集合A={m,n,p},試寫出A的所有子集,并指出其中的真子集。
54.(√2-1)?+lg5+lg2-8^?=___________。
55.已知向量a=(3,4),b=(5,12),a與b夾角的余弦值為________。
56.以點(?2,?1)為圓心,且過p(?3,0)的圓的方程是_________;
57.設圓的方程為x2+y2-4y-5=0,其圓心坐標為________。
58.已知函數(shù)y=2x+t經(jīng)過點P(1,4),則t=_________。
59.已知函數(shù)f(x)=ax3-2x的圖像過點(-1,4),則a=_________。
60.小明想去參加同學會,想從3頂帽子、5件衣服、4條子中各選一樣穿戴,則共有________種搭配方法。
61.直線y=ax+1的傾斜角是Π/3,則a=________。
62..已知數(shù)據(jù)x?,x?,……x??的平均數(shù)為18,則數(shù)據(jù)x?+2,,x?+2,x??+2的平均數(shù)是______。
63.已知數(shù)據(jù)10,x,11,y,12,z的平均數(shù)為8,則x,y,z的平均數(shù)為________。
64.首項a?=2,公差d=3的等差數(shù)列前10項之和為__________。.
65.已知向量a=(x-3,2),b(1,x),若a⊥b,則x=________。
66.向量a=(一2,1),b=(k,k+1),若a//b,則k=________。
67.已知函數(shù)f(x)是定義R上的奇函數(shù),當x∈(-∞,0)時,f(x)=2x3+x2,則f(2)=________。
68.已知扇形的圓心角為120,半徑為15cm,則扇形的弧長為________cm。
69.若向量a=(1,-1),b=(2,-1),則|3a-b|=________。
70.同時投擲兩枚骰子,則向上的點數(shù)和是9的概率是________。
三、計算題(10題)71.計算:(4/9)^?+(√3+√2)?+125^(-?)
72.我國是一個缺水的國家,節(jié)約用水,人人有責;某市為了加強公民的節(jié)約用水意識,采用分段計費的方法A)月用水量不超過10m3的,按2元/m3計費;月用水量超過10m3的,其中10m3按2元/m3計費,超出部分按2.5元/m3計費。B)污水處理費一律按1元/m3計費。設用戶用水量為xm3,應交水費為y元(1)求y與x的函數(shù)關(guān)系式(2)張大爺家10月份繳水費37元,問張大爺10月份用了多少水量?
73.已知sinα=1/3,則cos2α=________。
74.已知在等差數(shù)列{an}中,a1=2,a8=30,求該數(shù)列的通項公式和前5項的和S5;
75.求函數(shù)y=cos2x+sinxcosx-1/2的最大值。
76.圓(x-1)2+(x-2)2=4上的點到直線3x-4y+20=0的最遠距離是________。
77.已知tanα=2,求(sinα+cosα)/(2sinα-cosα)的值。
78.數(shù)列{an}為等差數(shù)列,a?+a?+a?=6,a?+a?=25,(1)求{an}的通項公式;(2)若bn=a?n,求{bn}前n項和Sn;
79.已知三個數(shù)成等差數(shù)列,它們的和為9,若第三個數(shù)加上4后,新的三個數(shù)成等比數(shù)列,求原來的三個數(shù)。
80.已知集合A={X|x2-ax+15=0},B={X|x2-5x+b=0},如果A∩B={3},求a,b及A∪B
參考答案
1.C[解析]講解:函數(shù)求值問題,將x=2帶入求得,f(2)=2×2+5=9,選C
2.A[解析]講解:考察集合相等,集合里的元素也必須相同,a,2a,要分別等于2,4,則只能有a=2,選A
3.A由圓x2+y2-4x+4y+6=0,易得圓心為(2,-2),半徑為√2.圓心(2,-2)到直線x-y-5=0的距離為√2/2.利用幾何性質(zhì),則弦長為2√(√2)2-(√2/2)2=√6??键c:和圓有關(guān)的弦長問題.感悟提高:計算直線被圓截得弦長常用幾何法,利用圓心到直線的距離,弦長的一半,及半徑構(gòu)成直角三角形計算,即公式d2+(AB/2)2=r2,d是圓到直線的距離,r是圓半徑,AB是弦長.
4.C
5.C[解析]講解:考察基本函數(shù)的性質(zhì),選項A,B為增函數(shù),D為周期函數(shù),C指數(shù)函數(shù)當?shù)讛?shù)大于0小于1時,為減函數(shù)。
6.A
7.C由正弦定理可得a/sinA=c/sinC,2/sin45°=c/sin30°,考點:正弦定理
8.B
9.D由雙曲方程可知:a2=10,b2=2,所以c2=12,c=2√3,焦距為2c=4√3.考點:雙曲線性質(zhì).
10.C[解析]講解:絕對值不等式的化簡,-3≤x-5≤3,解得2≤x≤8,整數(shù)解有7個
11.D
12.A
13.C
14.B
15.B[解析]講解:解不等式,由|x-1|<2得x?(-1,3),由x(x-3)<0得x?(0,3),后者能推出前者,前者推不出后者,所以是必要不充分條件。
16.B因為a3+a5=2a4=10,所以a4=5,所以d=(a4-a1)/(4-1)=1所以a7=a1+6d=8.考點:等差數(shù)列求基本項.
17.C
18.B
19.B
20.C
21.Ba2=2,b2=1,c=√(a2-b2)=1,所以焦距:2c=2.考點:橢圓的焦距求解
22.B
23.D考點:中點坐標公式應用.
24.C
25.D
26.C[答案]C[解析]講解:不等式化簡為x2-3x<0,解得答案為0<x<3
27.D
28.D
29.D
30.AS5=(a1+a5)/2=5,a1+a5=2,即2a3=2,a3=1,公差d=a3-a2=1-0=1.考點:等差數(shù)列求公差.
31.A[解析]講解:二次函數(shù)的考察,函數(shù)對稱軸為y軸,則單調(diào)增區(qū)間為(0,+∞)
32.B
33.A
34.D
35.B
36.B[解析]講解:C2?*2*2=24
37.B
38.B
39.D[解析]講解:考察終邊相同的角,終邊相同則相差整數(shù)倍個360°,選D
40.C
41.A
42.B
43.A
44.D立體圖形的考核,底面為一個圓,周長知道了,求得半徑為3,高可以用勾股定理求出為4,得出體積12π
45.B
46.D
47.C
48.B考查充要條件概念,x>5=>x>3,所以p是q的必要條件;又因為x>3=>x>>5,所以p不是q的充分條件,故選B.考點:充分必要條件的判定.
49.D
50.B
51.甲
52.13/40
53.所有的子集:Φ,﹛m﹜,﹛n﹜,﹛p﹜,﹛m,n﹜,﹛m,p﹜,﹛n,p﹜,﹛m,n,p﹜。真子集:Φ,﹛m﹜,﹛n﹜,﹛p﹜,﹛m,n﹜,﹛m,p﹜,﹛n,p﹜。
54.0
55.63/65
56.(x+2)2+(y+1)2=2
57.y=(1/2)x+2y
58.2
59.-2
60.60
61.√3
62.20
63.5
64.155
65.1
66.-2/3
67.12
68.10Π
69.√5
70.1/9
71.解:(4/9)^?+(√3+√2)?+125^(-?)=((2/3)2)^?+1+(53)^(-?)=2/3+1+1/5=28/15
72.解:(1)y=3x(0≤x≤10)y=3.5x-5(x>10)(2)因為張大爺10月份繳水費為37元,所以張大爺10月份用水量一定超過10m3又因為y=37所以3.5x-5=37所以x=12m3答:張大爺10月份用水12m3。
73.7/9
74.解:an
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人房屋買賣合同模板(含貸款條款)4篇
- 2025年度個人借款三方擔保合同糾紛解決條款4篇
- 年度腎上腺皮質(zhì)激素類藥產(chǎn)業(yè)分析報告
- 2025年個人購房合同(含房屋保險服務)
- 2025年度高速公路隧道照明安裝與維護合同模板3篇
- 二零二五年度高品質(zhì)抹灰施工班組勞務分包協(xié)議3篇
- 2025年度個人入股合作協(xié)議書范本:航空航天股權(quán)投資協(xié)議3篇
- 2025年度有機茶園種植與產(chǎn)品銷售合作協(xié)議范本4篇
- 網(wǎng)絡教育課程設計
- 2024版新房購買中介合作協(xié)議
- T-SDLPA 0001-2024 研究型病房建設和配置標準
- (人教PEP2024版)英語一年級上冊Unit 1 教學課件(新教材)
- 全國職業(yè)院校技能大賽高職組(市政管線(道)數(shù)字化施工賽項)考試題庫(含答案)
- 2024胃腸間質(zhì)瘤(GIST)診療指南更新解讀 2
- 光儲電站儲能系統(tǒng)調(diào)試方案
- 2024年二級建造師繼續(xù)教育題庫及答案(500題)
- 小學數(shù)學二年級100以內(nèi)連加連減口算題
- 建設單位如何做好項目管理
- 三年級上遞等式計算400題
- 一次性餐具配送投標方案
- 《中華民族多元一體格局》
評論
0/150
提交評論