2024屆安徽省蕪湖市普通高中高一上數(shù)學期末學業(yè)水平測試模擬試題含解析_第1頁
2024屆安徽省蕪湖市普通高中高一上數(shù)學期末學業(yè)水平測試模擬試題含解析_第2頁
2024屆安徽省蕪湖市普通高中高一上數(shù)學期末學業(yè)水平測試模擬試題含解析_第3頁
2024屆安徽省蕪湖市普通高中高一上數(shù)學期末學業(yè)水平測試模擬試題含解析_第4頁
2024屆安徽省蕪湖市普通高中高一上數(shù)學期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆安徽省蕪湖市普通高中高一上數(shù)學期末學業(yè)水平測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12小題,共60分)1.函數(shù)f(x)=2ax+1–1(a>0,且a≠1)恒過定點A.(–1,–1) B.(–1,1)C.(0,2a–1) D.(0,1)2.過點,直線的斜率等于1,則m的值為()A.1 B.4C.1或3 D.1或43.若,,且,,則函數(shù)與函數(shù)在同一坐標系中的圖像可能是()A. B.C. D.4.已知α是第三象限的角,且,則()A. B.C. D.5.若函數(shù)是偶函數(shù),函數(shù)是奇函數(shù),則()A.函數(shù)是奇函數(shù) B.函數(shù)是偶函數(shù)C.函數(shù)是偶函數(shù) D.函數(shù)是奇函數(shù)6.函數(shù),其部分圖象如圖所示,則()A. B.C. D.7.冪函數(shù)的圖象關于軸對稱,且在上是增函數(shù),則的值為()A. B.C. D.和8.設則的值A.9 B.C.27 D.9.若函數(shù)在閉區(qū)間上有最大值5,最小值1,則的取值范圍是()A. B.C. D.10.已知圓(,為常數(shù))與.若圓心與圓心關于直線對稱,則圓與的位置關系是()A.內(nèi)含 B.相交C.內(nèi)切 D.相離11.如圖中,分別是正三棱柱(兩底面為正三角形的直棱柱)的頂點或所在棱的中點,則表示直線是異面直線的圖形有()A.①③ B.②③C.②④ D.②③④12.已知點,向量,若,則點的坐標為()A. B.C. D.二、填空題(本大題共4小題,共20分)13.現(xiàn)采用隨機模擬的方法估計某運動員射擊4次,至少擊中3次的概率:先由計算器給出0到9之間取整數(shù)值的隨機數(shù),指定0,1表示沒有擊中目標,2,3,4,5,6,7,8,9表示擊中目標,以4個隨機數(shù)為一組,代表射擊4次的結果,經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):75270293714098570347437386366947141746980371623326168045601136619597742476104281根據(jù)以上數(shù)據(jù)估計該射擊運動員射擊4次至少擊中3次的概率為__________14.設函數(shù);若方程有且僅有1個實數(shù)根,則實數(shù)b的取值范圍是__________15.過點,的直線的傾斜角為___________.16.已知,,,則___________.三、解答題(本大題共6小題,共70分)17.已知函數(shù)f(x)=(m∈Z)為偶函數(shù),且在(0,+∞)上為增函數(shù)(1)求m的值,并確定f(x)的解析式;(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在實數(shù)a,使g(x)在區(qū)間[2,3]上的最大值為2,若存在,求出a的值,若不存在,請說明理由18.某單位安裝1個自動污水凈化設備,安裝這種凈水設備的成本費(單位:萬元)與管線、主體裝置的占地面積x(單位:平方米)成正比,比例系數(shù)為0.1,為了保證正常用水,安裝后采用凈水裝置凈水和自來水公司供水互補的用水模式.假設在此模式下,安裝后該單位每年向自來水公司繳納水費為,記y為該單位安裝這種凈水設備費用與安裝設備后每年向自來水公司繳水費之和(1)寫出y關于x的函數(shù)表達式;(2)求x為多少時,y有最小值,并求出y的最小值19.已知函數(shù)為奇函數(shù).(1)求實數(shù)a的值;(2)求的值.20.已知函數(shù)是奇函數(shù),且;(1)判斷函數(shù)在區(qū)間的單調(diào)性,并給予證明;(2)已知函數(shù)(且),已知在的最大值為2,求的值21.已知函數(shù).(1)若在上的最大值為,求的值;(2)若為的零點,求證:.22.某種樹木栽種時高度為A米為常數(shù),記栽種x年后的高度為,經(jīng)研究發(fā)現(xiàn),近似地滿足,其中,a,b為常數(shù),,已知,栽種三年后該樹木的高度為栽種時高度的3倍(Ⅰ)求a,b的值;(Ⅱ)求栽種多少年后,該樹木的高度將不低于栽種時的5倍參考數(shù)據(jù):,

參考答案一、選擇題(本大題共12小題,共60分)1、B【解析】令x+1=0,求得x和y的值,從而求得函數(shù)f(x)=2ax+1–1(a>0,且a≠1)恒過定點的坐標【詳解】令x+1=0,求得x=-1,且y=1,故函數(shù)f(x)=2ax+1–1(a>0且a≠1)恒過定點(-1,1),故選B.【點睛】】本題主要考查指數(shù)函數(shù)的單調(diào)性和特殊點,屬于基礎題2、A【解析】解方程即得解.【詳解】由題得.故選:A【點睛】本題主要考查斜率的計算,意在考查學生對該知識的理解掌握水平.3、B【解析】結合指數(shù)函數(shù)、對數(shù)函數(shù)的圖象按和分類討論【詳解】對數(shù)函數(shù)定義域是,A錯;C中指數(shù)函數(shù)圖象,則,為減函數(shù),C錯;BD中都有,則,因此為增函數(shù),只有B符合故選:B4、B【解析】由已知求得,則由誘導公式可求.【詳解】α是第三象限的角,且,,.故選:B.5、C【解析】根據(jù)奇偶性的定義判斷即可;【詳解】解:因為函數(shù)是偶函數(shù),函數(shù)是奇函數(shù),所以、,對于A:令,則,故是非奇非偶函數(shù),故A錯誤;對于B:令,則,故為奇函數(shù),故B錯誤;對于C:令,則,故為偶函數(shù),故C正確;對于D:令,則,故為偶函數(shù),故D錯誤;故選:C6、C【解析】利用圖象求出函數(shù)的解析式,即可求得的值.【詳解】由圖可知,,函數(shù)的最小正周期為,則,所以,,由圖可得,因為函數(shù)在附近單調(diào)遞增,故,則,,故,所以,,因此,.故選:C.7、D【解析】分別代入的值,由冪函數(shù)性質判斷函數(shù)增減性即可.【詳解】因為,,所以當時,,由冪函數(shù)性質得,在上是減函數(shù);所以當時,,由冪函數(shù)性質得,在上是常函數(shù);所以當時,,由冪函數(shù)性質得,圖象關于y軸對稱,在上是增函數(shù);所以當時,,由冪函數(shù)性質得,圖象關于y軸對稱,在上是增函數(shù);故選:D8、C【解析】因為,故,所以,故選C.9、D【解析】數(shù)形結合:根據(jù)所給函數(shù)作出其草圖,借助圖象即可求得答案【詳解】,令,即,解得或,,作出函數(shù)圖象如下圖所示:因為函數(shù)在閉區(qū)間上有最大值5,最小值1,所以由圖象可知,故選:D【點睛】本題考查二次函數(shù)在閉區(qū)間上的最值問題,考查數(shù)形結合思想,深刻理解“三個二次”間的關系是解決該類問題的關鍵10、B【解析】由對稱求出,再由圓心距與半徑關系得圓與圓的位置關系【詳解】,,半徑為,關于直線的對稱點為,即,所以,圓半徑為,,又,所以兩圓相交故選:B11、C【解析】對于①③可證出,兩條直線平行一定共面,即可判斷直線與共面;對于②④可證三點共面,但平面;三點共面,但平面,即可判斷直線與異面.【詳解】由題意,可知題圖①中,,因此直線與共面;題圖②中,三點共面,但平面,因此直線與異面;題圖③中,連接,則,因此直線與共面;題圖④中,連接,三點共面,但平面,所以直線與異面.故選C.【點睛】本題主要考查異面直線的定義,屬于基礎題.12、B【解析】設點坐標為,利用向量的坐標運算建立方程組,解之可得選項.【詳解】設點坐標為,,A,所以,又,,所以.解得,解得點坐標為.故選:B.二、填空題(本大題共4小題,共20分)13、【解析】根據(jù)數(shù)據(jù)統(tǒng)計擊中目標的次數(shù),再用古典概型概率公式求解.【詳解】由數(shù)據(jù)得射擊4次至少擊中3次的次數(shù)有15,所以射擊4次至少擊中3次的概率為.故答案為:【點睛】本題考查古典概型概率公式,考查基本分析求解能力,屬基礎題.14、【解析】根據(jù)分段函數(shù)的解析式作出函數(shù)圖象,將方程有且僅有1個實數(shù)根轉化為函數(shù)與直線有一個交點,然后數(shù)形結合即可求解.【詳解】作出函數(shù)的圖象,如圖:結合圖象可得:,故答案為:.15、##【解析】設直線的傾斜角為,求出直線的斜率即得解.【詳解】解:設直線的傾斜角為,由題得直線的斜率為,因為,所以.故答案為:16、【解析】由已知條件結合所給角的范圍求出、,再將展開即可求解【詳解】因為,所以,又因為,所以,所以,因為,,所以,因為,所以,所以,故答案為:.【點睛】關鍵點點睛:本題解題的關鍵點是由已知角的三角函數(shù)值的符號確定角的范圍進而可求角的正弦或余弦,將所求的角用已知角表示即.三、解答題(本大題共6小題,共70分)17、(1)或,(2)存在實數(shù),使在區(qū)間上的最大值為2【解析】(1)由條件冪函數(shù),在上為增函數(shù),得到解得2分又因為所以或3分又因為是偶函數(shù)當時,不滿足為奇函數(shù);當時,滿足為偶函數(shù);所以5分(2)令,由得:在上有定義,且在上為增函數(shù).7分當時,因為所以8分當時,此種情況不存在,9分綜上,存在實數(shù),使在區(qū)間上的最大值為210分考點:函數(shù)的基本性質運用點評:解決該試題的關鍵是能理解函數(shù)的奇偶性和單調(diào)性的運用,能理解復合函數(shù)的性質得到最值,屬于基礎題18、(1)(2)當時,y有最小值為3.【解析】(1)根據(jù)y為該單位安裝這種凈水設備費用與安裝設備后每年向自來水公司繳水費之和即可建立函數(shù)模型;(2)利用均值不等式即可求解.【小問1詳解】解:由題意,y關于x的函數(shù)表達式為;【小問2詳解】解:因為,當且僅當,即時等號成立.所以當時,y有最小值為3.19、(1)(2)【解析】(1)由奇函數(shù)定義求;(2)代入后結合對數(shù)恒等式計算【詳解】(1)因為函數(shù)為奇函數(shù),所以恒成立,可得.(2)由(1)可得.所以.【點睛】本題考查函數(shù)的奇偶性,考查對數(shù)恒等式,屬于基礎題20、(1)函數(shù)在區(qū)間是遞增函數(shù);證明見解析;(2)或【解析】(1)由奇函數(shù)定義建立方程組可求出,再用定義法證明單調(diào)性即可;(2)根據(jù)復合函數(shù)的單調(diào)性,分類討論的單調(diào)性,結合函數(shù)的單調(diào)性研究最值即可求解【詳解】(1)∵是奇函數(shù),∴,又,且,所以,,經(jīng)檢驗,滿足題意得,所以函數(shù)在區(qū)間是遞增函數(shù)證明如下:且,所以有:由,得,,又,故,所以,即,所以函數(shù)在區(qū)間是遞增函數(shù)(2)令,由(1)可得在區(qū)間遞增函數(shù),①當時,是減函數(shù),故當取得最小值時,(且)取得最大值2,在區(qū)間的最小值為,故的最大值是,∴②當時,是增函數(shù),故當取得最大值時,(且)取得最大值2,在區(qū)間的最大值為,故的最大值是,∴或21、(1)2;(2)詳見解析.【解析】(1)易知函數(shù)和在上遞增,從而在上遞增,根據(jù)在上的最大值為求解.(2)根據(jù)為的零點,得到,由零點存在定理知,然后利用指數(shù)和對數(shù)互化,將問題轉化為,利用基本不等式證明.【詳解】(1)因為函數(shù)和在上遞增,所以在上遞增,又因為在上的最大值為,所以,解得;(2)因為為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論