版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖北省黃岡市黃梅縣第二中學2024屆數(shù)學高一上期末調(diào)研試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,共60分)1.設(shè)函數(shù),A3 B.6C.9 D.122.已知是奇函數(shù),且滿足,當時,,則在內(nèi)是A.單調(diào)增函數(shù),且 B.單調(diào)減函數(shù),且C.單調(diào)增函數(shù),且 D.單調(diào)減函數(shù),且3.設(shè)定義在上的函數(shù)滿足:當時,總有,且,則不等式的解集為()A. B.C. D.4.函數(shù)零點所在的區(qū)間是()A. B.C. D.5.向量,若,則k的值是()A.1 B.C.4 D.6.已知角的頂點與坐標原點重合,始邊與軸的非負半軸重合,其終邊與單位圓相交于點,則()A. B.C. D.7.函數(shù)的單調(diào)遞減區(qū)間是()A. B.C. D.8.若一個三角形采用斜二測畫法作直觀圖,則其直觀圖的面積是原來三角形面積的()倍.A B.C. D.29.某圓的一條弦長等于半徑,則這條弦所對的圓心角為A. B.C. D.110.中國茶文化博大精深,某同學在茶藝選修課中了解到,茶水的口感與茶葉類型和水的溫度有關(guān),某種綠茶用80℃左右的水泡制可使茶湯清澈明亮,營養(yǎng)也較少破壞.為了方便控制水溫,該同學聯(lián)想到牛頓提出的物體在常溫環(huán)境下溫度變化的冷卻模型:如果物體的初始溫度是℃,環(huán)境溫度是℃,則經(jīng)過分鐘后物體的溫度℃將滿足,其中是一個隨著物體與空氣的接觸狀況而定的正常數(shù).該同學通過多次測量平均值的方法得到初始溫度為100℃的水在20℃的室溫中,12分鐘以后溫度下降到50℃.則在上述條件下,℃的水應(yīng)大約冷卻()分鐘沖泡該綠茶(參考數(shù)據(jù):,)A.3 B.3.6C.4 D.4.811.函數(shù)的最大值為()A. B.C. D.12.已知函數(shù),將圖象向右平移個單位長度得到函數(shù)的圖象,若對任意,都有成立,則的值為A. B.1C. D.2二、填空題(本大題共4小題,共20分)13.若函數(shù)的值域為,則的取值范圍是__________14.如圖,扇環(huán)ABCD中,弧,弧,,則扇環(huán)ABCD的面積__________15.若,,則________.16.不等式對任意實數(shù)都成立,則實數(shù)的取值范圍是__________三、解答題(本大題共6小題,共70分)17.已知函數(shù)當時,判斷在上的單調(diào)性并用定義證明;若對任意,不等式恒成立,求實數(shù)m的取值范圍18.設(shè)函數(shù)的定義域為,函數(shù)的定義域為.(1)求;(2)若,且函數(shù)在上遞減,求的取值范圍.19.汕頭市某體育用品商店購進一批滑板,每件進價為100元,售價為130元,每星期可賣出80件.商家決定降價促銷,根據(jù)市場調(diào)查,每降價5元,每星期可多賣出20件.(1)求商家降價前每星期的銷售利潤為多少元?(2)降價后,商家要使每星期的銷售利潤最大,應(yīng)將售價定為多少元?最大銷售利潤是多少?20.有一種候鳥每年都按一定的路線遷陟,飛往繁殖地產(chǎn)卵.科學家經(jīng)過測量發(fā)現(xiàn)候鳥的飛行速度可以表示為函數(shù),單位是,其中表示候鳥每分鐘耗氧量的單位數(shù),表示測量過程中候鳥每分鐘的耗氧偏差.(參考數(shù)據(jù):,,)(1)若=3,候鳥每分鐘的耗氧量為8100個單位時,它的飛行速度是多少?(2)若=6,候鳥停下休息時,它每分鐘的耗氧量為多少個單位?(3)若雄鳥的飛行速度為,雌鳥的飛行速度為,那么此時雄鳥每分鐘的耗氧量是雌鳥每分鐘的耗氧量的多少倍?21.已知函數(shù).(1)求函數(shù)的定義域;(2)若實數(shù),且,求的取值范圍.22.計算(1)(2)
參考答案一、選擇題(本大題共12小題,共60分)1、C【解析】.故選C.2、A【解析】先根據(jù)f(x+1)=f(x﹣1)求出函數(shù)周期,然后根據(jù)函數(shù)在x∈(0,1)時上的單調(diào)性和函數(shù)值的符號推出在x∈(﹣1,0)時的單調(diào)性和函數(shù)值符號,最后根據(jù)周期性可求出所求【詳解】∵f(x+1)=f(x﹣1),∴f(x+2)=f(x)即f(x)是周期為2的周期函數(shù)∵當x∈(0,1)時,>0,且函數(shù)在(0,1)上單調(diào)遞增,y=f(x)是奇函數(shù),∴當x∈(﹣1,0)時,f(x)<0,且函數(shù)在(﹣1,0)上單調(diào)遞增根據(jù)函數(shù)的周期性可知y=f(x)在(1,2)內(nèi)是單調(diào)增函數(shù),且f(x)<0故選A【點睛】本題主要考查了函數(shù)的周期性和函數(shù)的單調(diào)性,同時考查了分析問題,解決問題的能力,屬于基礎(chǔ)題3、A【解析】將不等式變形后再構(gòu)造函數(shù),然后利用單調(diào)性解不等式即可.【詳解】由,令,可知當時,,所以在定義域上單調(diào)遞減,又,即,所以由單調(diào)性解得.故選:A4、D【解析】題目中函數(shù)較為簡單,可以直接求得對應(yīng)的零點,從而判斷所在區(qū)間即可【詳解】當時,令,即,所以;當時,令,即,,不在定義域區(qū)間內(nèi),舍所以函數(shù)零點所在的區(qū)間為故選:D5、B【解析】首先算出的坐標,然后根據(jù)建立方程求解即可.【詳解】因為所以,因為,所以,所以故選:B6、C【解析】由已知利用任意角的三角函數(shù)求得,再由二倍角的余弦公式求解即可【詳解】解:因為角的終邊與單位圓相交于點,則,故選:C7、D【解析】解不等式,即可得出函數(shù)的單調(diào)遞減區(qū)間.【詳解】解不等式,得,因此,函數(shù)的單調(diào)遞減區(qū)間為.故選:D.【點睛】本題考查余弦型函數(shù)單調(diào)區(qū)間的求解,考查計算能力,屬于基礎(chǔ)題.8、A【解析】以三角形的一邊為x軸,高所在的直線為y軸,由斜二測畫法看三角形底邊長和高的變化即可【詳解】以三角形的一邊為x軸,高所在的直線為y軸,由斜二測畫法知,三角形的底長度不變,高所在的直線為y′軸,長度減半,故三角形的高變?yōu)樵瓉淼?,故直觀圖中三角形面積是原三角形面積的.故選:A.【點睛】本題考查平面圖形的直觀圖,由斜二測畫法看三角形底邊長和高的變化即可,屬于基礎(chǔ)題.9、C【解析】直接利用已知條件,轉(zhuǎn)化求解弦所對的圓心角即可.【詳解】圓的一條弦長等于半徑,故由此弦和兩條半徑構(gòu)成的三角形是等邊三角形,所以弦所對的圓心角為.故選C.【點睛】本題考查扇形圓心角的求法,是基本知識的考查.10、B【解析】根據(jù)題意求出k的值,再將θ=80℃,=100℃,=20℃代入即可求得t的值.【詳解】由題可知:,沖泡綠茶時水溫為80℃,故.故選:B.11、C【解析】先利用輔助角公式化簡,再由正弦函數(shù)的性質(zhì)即可求解.【詳解】,所以當時,取得最大值,故選:C12、D【解析】利用輔助角公式化簡的解析式,再利用正弦型函數(shù)的圖象變換規(guī)律,正弦函數(shù)的圖象的對稱性,求得的值【詳解】,(其中,),將圖象向右平移個單位長度得到函數(shù)的圖象,得到,∴,,解得,故選D.二、填空題(本大題共4小題,共20分)13、【解析】由題意得14、3【解析】根據(jù)弧長公式求出,,再由根據(jù)扇形的面積公式求解即可.【詳解】設(shè),因為弧,弧,,所以,,所以,,又扇形的面積為,扇形的面積為,所以扇環(huán)ABCD的面積故答案為:315、【解析】,然后可算出的值,然后可得答案.【詳解】因為,,所以,所以,所以,,因為,所以,故答案為:16、【解析】利用二次不等式與相應(yīng)的二次函數(shù)的關(guān)系,易得結(jié)果.詳解】∵不等式對任意實數(shù)都成立,∴∴<k<2故答案為【點睛】(1)二次函數(shù)圖象與x軸交點的橫坐標、二次不等式解集的端點值、一元二次方程的解是同一個量的不同表現(xiàn)形式(2)二次函數(shù)、二次方程與二次不等式統(tǒng)稱“三個二次”,它們常結(jié)合在一起,而二次函數(shù)又是“三個二次”的核心,通過二次函數(shù)的圖象貫穿為一體.有關(guān)二次函數(shù)的問題,利用數(shù)形結(jié)合的方法求解,密切聯(lián)系圖象是探求解題思路的有效方法三、解答題(本大題共6小題,共70分)17、(1)見解析;(2)【解析】當時,在上單調(diào)遞增,利用定義法能進行證明;令,由,得,利用分離參數(shù)思想得,恒成立,求出最值即能求出實數(shù)的取值范圍【詳解】當時,在上單調(diào)遞增證明如下:在上任取,,∵,,∴,∴當時,在上單調(diào)遞增∵令,由,得,∵不等式恒成立,即在內(nèi)恒成立,即,∴,恒成立,又∵當時,,可得∴實數(shù)的取值范圍是【點睛】本題考查函數(shù)的單調(diào)性及證明,考查實數(shù)的取值范圍的求法,考查恒成立問題,正確分離參數(shù)是關(guān)鍵,也是常用的一種手段.通過分離參數(shù)可轉(zhuǎn)化為或恒成立,即或即可,利用單調(diào)性求出或即得解,是中檔題18、(1);(2).【解析】(1)先求出集合,,然后由補集和并集的定義求解即可;(2)先利用交集求出集合,然后利用二次函數(shù)的單調(diào)性分析求解即可【詳解】解:(1)由得,∴,由得,∴,∴,∴.(2)∵,,∴.由在上遞減,得,即,∴.19、(1)2400(元);(2)應(yīng)將售價定為125元,最大銷售利潤是2500元.【解析】(1)由銷售利潤=單件成本×銷售量,即可求商家降價前每星期銷售利潤;(2)由題意得,根據(jù)二次函數(shù)的性質(zhì)即可知最大銷售利潤及對應(yīng)的售價.【詳解】(1)由題意,商家降價前每星期的銷售利潤為(元);(2)設(shè)售價定為元,則銷售利潤.當時,有最大值2500.∴應(yīng)將售價定為125元,最大銷售利潤是2500元.20、(1)(2)555(3)9【解析】(1)直接代入求值即可,其中要注意對數(shù)的運算;(2)還是代入求值即可;(3)代入后得兩個方程,此時我們不需要解出、,只要求出它們的比值即可,所以由對數(shù)的運算性質(zhì),讓兩式相減,就可求得【小問1詳解】解:因為候鳥的飛行速度可以表示為函數(shù),所以將,代入函數(shù)式可得:故此時候鳥飛行速度為【小問2詳解】解:因為候鳥的飛行速度可以表示為函數(shù),將,代入函數(shù)式可得:即所以于是故候鳥停下休息時,它每分鐘的耗氧量為555個單位【小問3詳解】解:設(shè)雄鳥每分鐘的耗氧量為,雌鳥每分鐘的耗氧量為,依題意可得:,兩式相減可得:,于是故此時雄鳥每分鐘的耗氧量是雌鳥每分鐘的耗
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東理工學院《馬克思主義哲學原著》2023-2024學年第一學期期末試卷
- 廣東科技學院《音樂圖像學》2023-2024學年第一學期期末試卷
- 廣東機電職業(yè)技術(shù)學院《籃球基本技術(shù)與裁判》2023-2024學年第一學期期末試卷
- 廣東行政職業(yè)學院《珠寶首飾設(shè)計基礎(chǔ)》2023-2024學年第一學期期末試卷
- 廣東工程職業(yè)技術(shù)學院《化工熱力學實驗》2023-2024學年第一學期期末試卷
- 廣東第二師范學院《國際商務(wù)溝通》2023-2024學年第一學期期末試卷
- 廣東財貿(mào)職業(yè)學院《電競解說能力訓練》2023-2024學年第一學期期末試卷
- 幼兒安全頭盔課件下載
- 《報關(guān)與報檢實務(wù)》課件
- 廣東白云學院《中國城市發(fā)展與規(guī)劃史》2023-2024學年第一學期期末試卷
- T-CARM 002-2023 康復(fù)醫(yī)院建設(shè)標準
- 2024年不良資產(chǎn)處置相關(guān)項目投資計劃書
- 腸道支架植入術(shù)培訓課件
- 數(shù)字政府建設(shè)行業(yè)分析
- 人教版三年級上冊豎式計算練習400題及答案
- gmp生產(chǎn)工藝的驗證
- 關(guān)于調(diào)整縣人民醫(yī)院預(yù)算管理委員會成員的通知
- 《工程計量》課件
- 2024年度企業(yè)網(wǎng)絡(luò)搭建及應(yīng)用技能大賽方案
- 2024分娩鎮(zhèn)痛ppt課件完整版
- 教務(wù)處述職報告
評論
0/150
提交評論