江蘇省南京六合區(qū)程橋高級中學2024屆數(shù)學高一上期末統(tǒng)考試題含解析_第1頁
江蘇省南京六合區(qū)程橋高級中學2024屆數(shù)學高一上期末統(tǒng)考試題含解析_第2頁
江蘇省南京六合區(qū)程橋高級中學2024屆數(shù)學高一上期末統(tǒng)考試題含解析_第3頁
江蘇省南京六合區(qū)程橋高級中學2024屆數(shù)學高一上期末統(tǒng)考試題含解析_第4頁
江蘇省南京六合區(qū)程橋高級中學2024屆數(shù)學高一上期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江蘇省南京六合區(qū)程橋高級中學2024屆數(shù)學高一上期末統(tǒng)考試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.在平面直角坐標系中,設角的終邊上任意一點的坐標是,它與原點的距離是,規(guī)定:比值叫做的正余混弦,記作.若,則()A. B.C. D.2.在下列四組函數(shù)中,與表示同一函數(shù)的是()A.,B.,C.,D.,3.設,,,則A. B.C. D.4.若冪函數(shù)的圖像經(jīng)過點,則A.1 B.2C.3 D.45.的值是A. B.C. D.6.過點A(3,4)且與直線l:x﹣2y﹣1=0垂直的直線的方程是A.2x+y﹣10=0 B.x+2y﹣11=0C.x﹣2y+5=0 D.x﹣2y﹣5=07.已知函數(shù)在區(qū)間上是增函數(shù),則的取值范圍是()A. B.C. D.8.若集合,則集合()A. B.C. D.9.已知且,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.已知角的終邊經(jīng)過點,則的值為()A.11 B.10C.12 D.1311.如圖,四面體ABCD中,CD=4,AB=2,F(xiàn)分別是AC,BD的中點,若EF⊥AB,則EF與CD所成的角的大小是()A.30° B.45°C.60° D.90°12.已知函數(shù),若關于x的方程有五個不同實根,則m的值是()A.0或 B.C.0 D.不存在二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.已知△ABC的三個頂點分別為A(2,3),B(-1,-2),C(-3,4),則BC邊上的中線AD所在的直線方程為_____14.的值等于____________15.函數(shù)fx的定義域為D,給出下列兩個條件:①f1=0;②任取x1,x2∈D且x1≠16.在《九章算術》中,將四個面都為直角三角形的三棱錐稱之為鱉臑(bienao).已知在鱉臑中,平面,,則該鱉臑的外接球與內(nèi)切球的表面積之和為____三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.已知定義域為的函數(shù)是奇函數(shù).(1)求的解析式;(2)若恒成立,求實數(shù)的取值范圍.18.已知函數(shù),只能同時滿足下列三個條件中的兩個:①的解集為;②;③最小值為(1)請寫出這兩個條件的序號,求的解析式;(2)求關于的不等式的解集.19.已知函數(shù).(1)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;(2)在所給坐標系中畫出函數(shù)在區(qū)間的圖象(只作圖不寫過程).20.某工廠以xkg/h的速度生產(chǎn)運輸某種藥劑(生產(chǎn)條件要求邊生產(chǎn)邊運輸且3<x≤10),每小時可以獲得的利潤為100(2x+1+(1)要使生產(chǎn)運輸該藥品3h獲得的利潤不低于4500元,求x(2)x為何值時,每小時獲得的利潤最???最小利潤是多少?21.有一圓與直線相切于點,且經(jīng)過點,求此圓的方程22.計算(1)(2)

參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、D【解析】由可得出,根據(jù)題意得出,結合可得出關于和的方程組,解出這兩個量,然后利用商數(shù)關系可求出的值.【詳解】,則,由正余混弦的定義可得.則有,解得,因此,.故選:D.【點睛】本題考查三角函數(shù)的新定義,涉及同角三角函數(shù)基本關系的應用,根據(jù)題意建立方程組求解和的值是解題的關鍵,考查運算求解能力,屬于基礎題.2、B【解析】根據(jù)題意,先看函數(shù)的定義域是否相同,再觀察兩個函數(shù)的對應法則是否相同,即可得到結論.【詳解】對于A中,函數(shù)的定義域為,而函數(shù)的定義域為,所以兩個函數(shù)不是同一個函數(shù);對于B中,函數(shù)的定義域和對應法則完全相同,所以是同一個函數(shù);對于C中,函數(shù)的定義域為,而函數(shù)的定義域為,但是解析式不一樣,所以兩個函數(shù)不是同一個函數(shù);對于D中,函數(shù)的定義域為,而函數(shù)的定義域為,所以不是同一個函數(shù),故選:B.3、B【解析】本題首先可以通過函數(shù)的性質判斷出和的大小,然后通過對數(shù)函數(shù)的性質判斷出與的大小關系,最后即可得出結果【詳解】因為函數(shù)是增函數(shù),,,所以,因為,所以,故選B【點睛】本題主要考查了指數(shù)與對數(shù)的相關性質,考查了運算能力,考查函數(shù)思想,體現(xiàn)了基礎性與應用性,考查推理能力,是簡單題4、B【解析】由題意可設,將點代入可得,則,故選B.5、B【解析】由余弦函數(shù)的二倍角公式把等價轉化為,再由誘導公式進一步簡化為,由此能求出結果詳解】,故選B【點睛】本題考查余弦函數(shù)的二倍角公式的應用,解題時要認真審題,仔細解答,注意誘導公式的靈活運用,屬于基礎題.6、A【解析】依題意,設所求直線的一般式方程為,把點坐標代入求解,從而求出一般式方程.【詳解】設經(jīng)過點且垂直于直線的直線的一般式方程為,把點坐標代入可得:,解得,所求直線方程為:.故選:A【點睛】本題考查了直線的方程、相互垂直的直線斜率之間的關系,考查了推理能力與計算能力,屬于基礎題.7、A【解析】根據(jù)二次函數(shù)的單調(diào)區(qū)間及增減性,可得到,求解即可.【詳解】函數(shù),開口向下,對稱軸為函數(shù)在區(qū)間上是增函數(shù),所以,解得,所以實數(shù)a的取值范圍是.故選:A8、D【解析】解方程,再求并集.【詳解】故選:D.9、D【解析】根據(jù)充分、必要條件的知識確定正確選項.【詳解】“”時,若,則,不能得到“”.“”時,若,則,不能得到“”.所以“”是“”的既不充分也不必要條件.故選:D10、B【解析】由角的終邊經(jīng)過點,根據(jù)三角函數(shù)定義,求出,帶入即可求解.【詳解】∵角的終邊經(jīng)過點,∴,∴.故選:B【點睛】利用定義法求三角函數(shù)值要注意:(1)三角函數(shù)值的大小與點P(x,y)在終邊上的位置無關,嚴格代入定義式子就可以求出對應三角函數(shù)值;(2)當角的終邊在直線上時,或終邊上的點帶參數(shù)必要時,要對參數(shù)進行討論11、A【解析】取BC的中點G,連結FG,EG.先證明出(或其補角)即為EF與CD所成的角.在直角三角形△EFG中,利用正弦的定義即可求出的大小.【詳解】取BC的中點G,連結FG,EG.由三角形中位線定理可得:AB∥EG,CD∥FG.所以(或其補角)即為EF與CD所成的角.因為EF⊥AB,則EF⊥EG.因為CD=4,AB=2,所以EG=1,FG=2,則△EFG是一個斜邊FG=2,一條直角邊EG=1的直角三角形,所以,因為為銳角,所以,即EF與CD所成的角為30°.故選:A12、C【解析】令,做出的圖像,根據(jù)圖像確定至多存在兩個的值,使得與有五個交點時,的值或取值范圍,進而轉為求方程在的值或取值范圍有解,利用一元二次方程根的分布,即可求解.【詳解】做出圖像如下圖所示:令,方程,為,當時,方程沒有實數(shù)解,當或時,方程有2個實數(shù)解,當,方程有4個實數(shù)解,當時,方程有3個解,要使方程方程有五個實根,則方程有一根為1,另一根為0或大于1,當時,有或,當時,,或,滿足題意,當時,,或,不合題意,所以.故選:C.【點睛】本題考查復合方程的解,換元法是解題的關鍵,數(shù)形結合是解題的依賴,或直接用選項中的值代入驗證,屬于較難題.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、【解析】求出的坐標后可得的直線方程.【詳解】的坐標為,故的斜率為,故直線的方程為即,故答案為:14、2【解析】利用誘導公式、降次公式進行化簡求值.【詳解】.故答案為:15、2x-1【解析】由題意可知函數(shù)在定義域內(nèi)為增函數(shù),且f1【詳解】因為函數(shù)fx的定義域為D,且任取x1,x2所以fx因為f1所以f(x)=2故答案為:2x-116、【解析】M﹣ABC四個面都為直角三角形,MA⊥平面ABC,MA=AB=BC=2,∴三角形的AC=2,從而可得MC=2,那么ABC內(nèi)接球的半徑r:可得(﹣r)2=r2+(2﹣)2解得:r=2-∵△ABC時等腰直角三角形,∴外接圓半徑為AC=外接球的球心到平面ABC的距離為=1可得外接球的半徑R=故得:外接球表面積為.由已知,設內(nèi)切球半徑為,,,內(nèi)切球表面積為,外接球與內(nèi)切球的表面積之和為故答案為:.點睛:本題考查了球與幾何體的問題,一般外接球需要求球心和半徑,首先應確定球心的位置,借助于外接球的性質,球心到各頂點距離相等,這樣可先確定幾何體中部分點組成的多邊形的外接圓的圓心,過圓心且垂直于多邊形所在平面的直線上任一點到多邊形的頂點的距離相等,然后同樣的方法找到另一個多邊形的各頂點距離相等的直線,這樣兩條直線的交點,就是其外接球的球心.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1);(2).【解析】(1)由是奇函數(shù)可得,從而可求得值,即可求得的解析式;(2)由復合函數(shù)的單調(diào)性判斷在上單調(diào)遞減,結合函數(shù)的奇偶性將不等式恒成立問題轉化為,令,利用二次函數(shù)的性質求得的最大值,即可求得的取值范圍【詳解】(1)因為函數(shù)為奇函數(shù),所以,即,所以,所以,可得,函數(shù).(2)由(1)知所以在上單調(diào)遞減.由,得,因為函數(shù)是奇函數(shù),所以,所以,整理得,設,,則,當時,有最大值,最大值為.所以,即.【點睛】方法點睛:已知函數(shù)的奇偶性求參數(shù),主要方法有兩個,一是利用:(1)奇函數(shù)由恒成立求解,(2)偶函數(shù)由恒成立求解;二是利用特殊值:奇函數(shù)一般由求解,偶函數(shù)一般由求解,用特殊法求解參數(shù)后,一定要注意驗證奇偶性.18、(1)(2)答案見解析【解析】(1)若選①②,則的解集不可能為;若選②③,,開口向下,則無最小值.只能是選①③,由函數(shù)的解集為可知,-1,3是方程的根,則,又由的最小值可知且在對稱軸上取得最小值,從而解出;(2)由,即,然后對分類求解得答案;【小問1詳解】選①②,則,開口向下,所以的解集不可能為;選①③,函數(shù)的解集為,,3是方程的根,所以的對稱軸為,則,所以,又的最小值為,(1),解得,,所以則;選②③,,開口向下,則無最小值綜上,.【小問2詳解】由化簡得若,則或;若,則不等式解集為R;若,則或當時,不等式的解集為或;當,則不等式解集為R;當,則不等式的解集為或19、(1)最小正周期T=π;單調(diào)遞減區(qū)間為(k∈Z);(2)圖象見解析.【解析】(1)利用二倍角公式化簡函數(shù),再根公式求函數(shù)的周期和單調(diào)遞減區(qū)間;(2)利用“五點法”畫出函數(shù)的圖象.【詳解】解:f(x)=+cos2x=sin2x+cos2x=sin(2x+)(1)∴函數(shù)f(x)的最小正周期T==π,當2kπ+≤2x+≤2kπ+π,k∈Z,時,即2kπ+≤2x≤2kπ+π,k∈Z,故kπ+≤x≤kπ+π,k∈Z∴函數(shù)f(x)單調(diào)遞減區(qū)間為[kπ+,kπ+π](k∈Z)(2)圖象如下:20、(1)[6,10];(2)當x為4kg/h時,每小時獲得的利潤最小,最小利潤為1300元【解析】(1)由題設可得2x+1+8x-2≥15,結合3<x≤10求不等式的解集即可(2)應用基本不等式求y=100(2x+1+8x-2)的最小值,并求出對應的x【小問1詳解】依題意得:3×100(2x+1+8x-2)≥4500,即2x+1+8x-2由3<x≤10,故8x-2>0,可得x2-9x+18≥0,即(x-3)(x-6)≥0,解得x≤3或x≥6∴x的取值范圍為[6,10].【小問2詳解】設每小時獲得的利潤為y.y=100(2x+1+8x-2)=100[2(x-2)+8x-2+5]≥100[22(x-2)(8x-2)+5]=100(8+5)=1300,當2(x-2)=于是當生產(chǎn)運輸速度為4kg/h,每小時獲得的利潤最小,最小值為1300元21、x2+y2-10x-9y+39=0【解析】法一:設出圓的方程,代入B點坐標,計算參數(shù),即可.法二:設出圓的方程,結合題意,建立方程,計算參數(shù),即可.法三:設出圓的一般方程,代入A,B坐標,建立方程,計算參數(shù),即可.法四:計算CA直線方程,計算BP方程,計算點P坐標,計算半徑和圓心坐標,建立圓方程,即可【詳解】法一:由題意可設所求的方程為,又因為此圓過點,將坐標代入圓的方程求得,所以所求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論