版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2021年九年級(jí)上冊《一元二次方程》基礎(chǔ)卷
數(shù)學(xué)過關(guān)練習(xí)題
考試時(shí)間:120分鐘;滿分:150分
姓名:班級(jí):考號(hào):
題號(hào)二三總分
得分
評卷人得分
一.選擇題(共10小題,滿分40分,每小題4分)
1.(4分)用公式法解-x?+3x=l時(shí),先求出a、b、c的值,則a、b、c依次為()
A.-1,3,-1B.1,-3,-1C.-1,-3,-1D.1,3,1
2.(4分)若m是關(guān)于x的方程x?+nx-m=0的解,且mWO,則m+n的值是()
A.1B.-0.5C.0.5D.-1
3.(4分)對于代數(shù)式x=4x+5,通過配方能說明它的值一定是()
A.負(fù)數(shù)B.正數(shù)C.非負(fù)數(shù)D.非正數(shù)
4.(4分)一元二次方程x(x-2)=2-x的根是()
A.X!=X2=-1B.XI=X2=2C.XI=1,X2=2D.XJ=-1,x2=2
5.(4分)已知一個(gè)等腰三角形的一條邊長是6,另外兩邊是方程x?+28-llx=0的一個(gè)
根,則這個(gè)三角形的周長()
A.16B.14C.20或19D.A,B,C
6.(4分)當(dāng)x為何值時(shí),此代數(shù)式x014+6x有最小值()
A.0B.-3C.3D.不確定
7.(4分)用直接開平方法解方程(x+h)2=k,方程必須滿足的條件是()
A.k20B.h20C.hk>0D.k<0
8.(4分)如右圖所示,某幼兒園有一道長為16米的墻,
計(jì)劃用32米長的圍欄靠墻圍成一個(gè)面積為120平方米的矩
形草坪ABCD.則該矩形草坪BC邊的長是()
A.12B.18C.20D.12或20
9.(4分)設(shè)".是方程局x2-x-3=0的兩個(gè)根,則有()
A.Xi+x2=-1B.X[X2=-9C.XiX2=lD.x*2=9
10.(4分)方程x?-4x-(p-1)=0與x2+px-3=0僅有一個(gè)公共根,那么p的值為()
A.-2B.-1C.1D.2
評卷人得分
二.填空題(共4小題,滿分20分,每小題5分)
11.(5分)已知一元二次方程x2-3x-5=0的兩根分別為%、X2,那么x『+x/的值是
12.(5分)若關(guān)于x的一元二次方程(m-2)X2-4X+3=0有實(shí)數(shù)解,則m的取值范圍
為.
13.(5分)甲乙同時(shí)解方程x'+px+qR,甲抄錯(cuò)了一次項(xiàng)系數(shù),得兩根為2、7,乙抄錯(cuò)
了常數(shù)項(xiàng),得兩根為3、-10.則p=,q=.
14.(5分)兩個(gè)奇數(shù),其中一個(gè)為另一個(gè)的平方,較大奇數(shù)與較小奇數(shù)的差為110,兩
個(gè)奇數(shù)分別為,.
評卷人W分
三.解答題(共9小題,滿分90分)
15.(8分)(1)解方程x?-2x-2=0.
(2)用配方法解方程xJ4x+l=0.
16.(8分)已知關(guān)于x的方程x?-2kx+k-1=0的一個(gè)根大于1,另一個(gè)根小于1,求
實(shí)數(shù)k的取值范圍.
17.(8分)在直角坐標(biāo)系內(nèi)有一點(diǎn)A(2,5)另有一點(diǎn)B的縱坐標(biāo)為-1,A與B之間的
距離為10,求點(diǎn)B的坐標(biāo).
18.(8分)設(shè)a、b、c是等腰4ABC的三條邊,關(guān)于x的方程(+2亞x+2c-a=0有兩個(gè)
相等的實(shí)數(shù)根,且a、b為方程x'+mx-3m=0的兩根,求m的值.
19.(10分)如圖,在△ABC中,ZB=90°,AB=4cm,BC=10cm,
點(diǎn)P從點(diǎn)B出發(fā)沿BC以lcm/s的速度向點(diǎn)C移動(dòng),問:經(jīng)
過多少秒后,點(diǎn)P到點(diǎn)A的距離的平方比點(diǎn)P到點(diǎn)B的距
離的8倍大1?
20.(10分)中華商場將進(jìn)價(jià)為40元的襯衫按50元售出時(shí),每月能賣出500件,經(jīng)市
場調(diào)查,這種襯衫每件漲價(jià)4元,其銷售量就減少40件.如果商場計(jì)劃每月賺得8000
元利潤,那么售價(jià)應(yīng)定為多少?這時(shí)每月應(yīng)進(jìn)多少件襯衫?
21.(12分)觀察下列一元二次方程,并回答問題:
第1個(gè)方程:x2+x=0;
第2個(gè)方程:x2-1=0;
第3個(gè)方程:x2-x-2=0;
第4個(gè)方程:x2-2x-3=0;
(1)第2018個(gè)方程是;
(2)直接寫出第n個(gè)方程,并求出第n個(gè)方程的解;
(3)請說出這列一元二次方程的解的一個(gè)共同特點(diǎn).
22.(12分)一農(nóng)場要建一個(gè)長方形的養(yǎng)雞場,養(yǎng)雞場的一邊靠墻(墻長25m),另三邊
用木欄圍成,木欄的長為40m,
(1)若養(yǎng)雞場的面積能達(dá)到180m)則養(yǎng)雞場的長和寬各為多少?
(2)養(yǎng)雞場的面積能達(dá)到250m/
23.(14分)本屆政府為了解決農(nóng)民看病難的問題,決定下調(diào)藥品的價(jià)格.某種藥品經(jīng)
過連續(xù)兩次降價(jià)后,由每盒200元下調(diào)至128元,
(1)求這種藥品平均每次降價(jià)的百分率是多少?
(2)經(jīng)調(diào)查某藥店,該藥品每盒降價(jià)5%即可多銷售10盒.若該藥店原來每天可銷售
500盒,那么兩次調(diào)價(jià)后,每月可銷售該藥多少盒?
練習(xí)題參考答案
-.選擇題1.
【分析】將方程整理為一元二次方程的一般形式,找出二次項(xiàng)系數(shù),一次項(xiàng)系數(shù)及常數(shù)
項(xiàng)即可.
【解答】解:將方程整理為一般形式為-X2+3X-1=0,
可得二次項(xiàng)系數(shù)a=-l,一次項(xiàng)系數(shù)b=3,常數(shù)項(xiàng)為-1.
故選:A.
【剖析】此題考查了解一元二次方程-公式法,利用此方法解方程時(shí),首先將方程整理
為一般形式,找出a,b及c的值,然后計(jì)算出根的判別式的值,當(dāng)b2-4acN0時(shí),將
a,b及c的值代入求根公式可求出解.
2.
【分析】一元二次方程的根就是一元二次方程的解,就是能夠使方程左右兩邊相等的未
知數(shù)的值;將m代入原方程即可求得m+n的值.
【解答】解:把x=m代入方程x2+nx-m=0得m2+mn-m=0,
又.mwO,
方程兩邊同除以m,
可得m+n=l;
故選:A.
【剖析】此題中應(yīng)特別注意:方程兩邊同除以字母系數(shù)時(shí),應(yīng)強(qiáng)調(diào)字母系數(shù)不得為零.
3.
【分析】通過配方法將代數(shù)式變形,即可判斷其值的正負(fù).
【解答】解:由配方法得,x2-4x+5=(x-2)2+1
所以該代數(shù)式的值一定是正值
故選:B.
【剖析】此題考查了學(xué)生的應(yīng)用能力,解題時(shí)要注意配方法的步驟.注意在變形的過程
中不要改變式子的值.
4.
【分析】方程變形后,左邊分解因式化為積的形式,然后利用兩數(shù)相乘積為0,兩因式
中至少有一個(gè)為0轉(zhuǎn)化為兩個(gè)一元一次方程來求解.
【解答】解:方程變形得:x(x-2)+(x-2)=0,
分解因式得:(x+l)(x-2)=0,
可得:x+l=0或x-2=0,
解得:xi=-1,X2=2.
故選:D.
【剖析】此題考查了解一元二次方程-因式分解法,熟練掌握因式分解的方法是解本題
的關(guān)鍵.
5.
【分析】先解方程X2+28-llx=0,求得方程的根,再由三角形的三邊關(guān)系確定其中的
一根,最后求其周長即可.
【解答】解:「2+28-llx=0,(x-4)(x-7)=0,解得x=4,x=7,
【剖析】題干語句有歧義."另外兩邊是方程X2+28-llx=0的一個(gè)根
6.
【分析】運(yùn)用配方法變形x2+14+6x=(x+3)2+5;得出(x+3產(chǎn)+5最小時(shí),即(x+3)
2=0,然后得出答案.
【解答】解:,.x2+14+6x=x2+6x+9+5=(x+3)2+5,
???當(dāng)x+3=0時(shí),(x+3)2+5最小,
??.x=-3時(shí),代數(shù)式X2+14+6X有最小值.
故選:B.
【剖析】此題主要考查了配方法的應(yīng)用,得出(x+3產(chǎn)+5最小時(shí),即(x+3y=0,
這是解決問題的關(guān)鍵.
7.
【分析】根據(jù)一個(gè)數(shù)的平方是非負(fù)數(shù),可得k>0.
【解答】解:???(x+h)21,
.,.k>0.
故選:A.
【剖析】本題考查了用直接開方法求一元二次方程的解,
基本形式有:x2=a(a>0);ax2=b(a,b同號(hào)且a/0);(x+a)2=b(b>0);a(x+b)
2=c(a,c同號(hào)且a/0).
8.
【分析】設(shè)草坪BC的長為x米,則寬為田,根據(jù)面積為120平方米,列方程求解.
【解答】解:設(shè)草坪BC的長為x米,貝贏)哈,
由題意得,x?贊=120,
解得:
xi=12,X2=20,
???墻為16米,
,■,x=20不合題意.
故x=12.
故選:A.
【剖析】本題考查了一元二次方程的應(yīng)用,解答本題的關(guān)鍵是讀懂題意,設(shè)出未知數(shù),
找出合適的等量關(guān)系,列方程求解.
9.
【分析】已知XI、X2是方程9-X-3=0的兩個(gè)根,由根與系數(shù)關(guān)系X1X2=
,X1+X2=
-m可直接求出結(jié)果.
【解答】解:已知Xi、X2是方程同X2-X-3=0的兩個(gè)根,
由根與系數(shù)關(guān)系,得XIX2=|H|二-9,X1+X2="國=3,故選B.
【剖析】要求學(xué)生掌握根與系數(shù)的關(guān)系.一元二次方程ax2+bx+c=0的根與系數(shù)關(guān)系
即韋達(dá)定理,兩根之和是言,兩根之積是1.
10.
【分析】根據(jù)方程有公共根,設(shè)它們的公共根為a,代入兩個(gè)方程,即可求得p的值.
【解答】解:設(shè)它們的公共根為a,..a2-4a-(p-1)=0與a2+ap-3=0,兩式相
減,得a(p+4)=4-p,
整理得a=^|,將2=闋代入a2+ap-3=0,
整理得(p+2)(-p2-16)=0,
解得p=-2.故選A.
【剖析】本題考查方程根的概念和解方程的能力.
二.填空題(共4小題,滿分20分,每小題5分)
11.
【分析】根據(jù)根與系數(shù)的關(guān)系得到XI+X2=3,X1X2=-5,再利用完全平方公式變形得到
2
X12+X22=(X1+X2)-2X1X2,然后利用整體代入的方法計(jì)算.
【解答】解:根據(jù)題意得XI+X2=3,X1X2=-5,
所以X12+X22=(X1+X2)2-2x?2=32-2x(-5)=19.
故答案為19.
【剖析】本題考查了根與系數(shù)的關(guān)系:若Xi,X2是一元二次方程ax2+bx+c=0(aHO)
的兩根時(shí),X1+X2=),XiX2=n-
12.
【分析】根據(jù)二次項(xiàng)系數(shù)非零結(jié)合根的判別式ANO,即可得出關(guān)于m的一元一次不等
式組,解之即可得出結(jié)論.
【解答】解:.??關(guān)于x的一元二次方程(m-2)x2-4x+3=0有實(shí)數(shù)解,
產(chǎn)2尸0
解得:ms圖且mw2.
故答案為:ms愣且mw2.
【剖析】本題考查了根的判別式以及一元二次方程的定義,根據(jù)二次項(xiàng)系數(shù)非零結(jié)合根
的判別式ANO,列出關(guān)于m的一元一次不等式組是解題的關(guān)鍵.
13.
【分析】根據(jù)根與系數(shù)的關(guān)系得到2x7=q,3+(-10)=-p,然后解兩個(gè)方程即可
得到p和q的值.
【解答】解:根據(jù)題意得2x7=q,3+(-10)=-p,
所以p=7,q=14.
故答案為7,14.
【剖析】本題考查了根與系數(shù)的關(guān)系:若k,X2是一元二次方程ax2+bx+c=0(a/0)
的兩根時(shí),Xi+X2=-曲,XiX2=m.
14.
【分析】設(shè)較小奇數(shù)為x,則較大奇數(shù)為X2,根據(jù)"較大奇數(shù)與較小奇數(shù)的差為110"
列方程X2-X=110,解方程即可求解.
【解答】解:設(shè)較小奇數(shù)為X,則較大奇數(shù)為X2,根據(jù)題意得X2-X=110
解之得Xi=U,X2=10(不合題意,舍去)
所以較大奇數(shù)為X2=121.
【剖析】找到關(guān)鍵描述語,找到等量關(guān)系準(zhǔn)確的列出方程是解決問題的關(guān)鍵.判斷所求
的解是否符合題意,舍去不合題意的解.
三.解答題(共9小題,滿分90分)
15.
【分析】此題考查了配方法解一元二次方程,解題時(shí)要注意解題步驟的準(zhǔn)確應(yīng)用,把左
邊配成完全平方式,右邊化為常數(shù),然后再開平方,此兩題都用配方法.
【解答】解:(l);x2-2x-2=0,
.'.X2-2x=2,
.?.x2-2x+l=2+l,
=(x-1)2=3,
二.x=l士近,
解得X1=1+?,X1=1-?;
(2)-.x2-4x+l=0,
.,.x2-4x=-1,
.,.x2-4x+4=-1+4,
=(x-2)2=3,
,x=2士近,
解得xi=2+?,X2=2-?.
【剖析】配方法的一般步驟:
(1)把常數(shù)項(xiàng)移到等號(hào)的右邊;
(2)把二次項(xiàng)的系數(shù)化為1;
(3)等式兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方.
選擇用配方法解一元二次方程時(shí),最好使方程的二次項(xiàng)的系數(shù)為1,一次項(xiàng)的系數(shù)是2
的倍數(shù).
16.
【分析】一個(gè)根大于1,另一個(gè)根小于1,即方程兩根與1的差的乘積是負(fù)數(shù),根據(jù)一
元二次方程根與系數(shù)的關(guān)系表示出兩根的和與兩根的積,根據(jù)(X「1)(X2-1)=X1X2
-(X1+X2)+1,即可得到關(guān)于k的方程,即可求得k的值.
【解答】解:設(shè)兩根為X1>1,X2<1.
那么X1-1>0,X2-1<0.
.1.(X1-1)(X2-1)<0.
X1X2-(X1+X2)+1<0.
.?,k-0.25-2k+l<0.
解得k>||.
由判別式A>0,(2k-l)2>0;kR⑶
綜上:k的取值范圍為k>鳥
【剖析】解決本題的關(guān)鍵是得到與所給題意相關(guān)的式子,用根與系數(shù)關(guān)系求解.
17.
【分析】設(shè)B點(diǎn)的橫坐標(biāo)為x,則B(x,-1),AB=|J(X-2)2+(-1-5)4,又AB的值
為10,依此為等量關(guān)系列出方程求出x的值,即求出了點(diǎn)B的坐標(biāo).
【解答】解:設(shè)B點(diǎn)的橫坐標(biāo)為x,則B(x,-1)由題意得:
AB=|A/(X-2)2+(-1-5)4=10,
整理,得:(x-2產(chǎn)=64,
即:x-2=8或x-2=-8,
.,.Xi=-6,X2=10
所以點(diǎn)B的坐標(biāo)為:(-6,-1)或(10,-1).
【剖析】本題主要考查一元二次方程的應(yīng)用,關(guān)鍵在于利用兩點(diǎn)間的距離公式,用x表
示出AB的值,找出等量關(guān)系,列出方程求解.平面直角坐標(biāo)系中的兩點(diǎn)間的距離公式:
如果A點(diǎn)的坐標(biāo)為(X1,yi\B點(diǎn)的坐標(biāo)為(X2,y2)那么AB=M(x「X2)2+(y「y2)2
18.
【分析】由方程X2+2瓜x+2c-a=0有兩個(gè)相等的實(shí)數(shù)根,可得△=(),把對應(yīng)的值代
入△=()中整理即可得到a+b=2c之間的關(guān)系式,從而得a=b=c,進(jìn)而可以判斷方程
x2+mx-3m=0有兩個(gè)相等的實(shí)數(shù)根,通過△=()即可求得m的值.
【解答】解:??方程x2+2亞x+2c-a=0有兩個(gè)相等的實(shí)數(shù)根,
.1.△=0,
即:4b-4x(2c-a)=0,
.'.a+b-2c=0,
即a+b=2c,
.?a、b、c是等腰AABC的三條邊,
.'.a=b=c.
.a,b為方程x2+mx-3m=0的兩根,
.?方程x2+mx-3m=0有兩個(gè)相等的實(shí)數(shù)根,
.?.m2-4x(-3m)=0,解得m=-12或m=0(舍去).
【剖析】本題考查了一元二次方程ax2+bx+c=0(aw0,a,b,c為常數(shù))根的判別式.當(dāng)
△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)&=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)^<0,方
程沒有實(shí)數(shù)根.
19.
【分析】此題的相等關(guān)系是:點(diǎn)P到點(diǎn)A的距離的平方比點(diǎn)P到點(diǎn)B的距離的8倍大
1,即PA2-8PB=1,據(jù)此即可列方程求解.
【解答】解:假設(shè)當(dāng)P點(diǎn)移到E點(diǎn)時(shí)可滿足本題的條件,那么就有△ABE為直角三角形,
BE=PB,EA=PA,由題意得PA2-8PB=1,
設(shè)經(jīng)過x秒后點(diǎn)P到點(diǎn)A的距離的平方比點(diǎn)P到點(diǎn)B的距離的8倍大1,
222
由題意得BE=PB=lxx=xcm,AE=PA=42+x
.*.42+x2-8x=l
解得xi=3,X2=5.
答:經(jīng)過3秒或5秒后,點(diǎn)P到點(diǎn)A的距離的平方比點(diǎn)P到點(diǎn)B的距離的8倍大1.
【剖析】本題應(yīng)用了勾股定理和路程=速度x時(shí)間這個(gè)公式.找到關(guān)鍵描述語,找到等
量關(guān)系準(zhǔn)確的列出方程是解決問題的關(guān)鍵.
20.
【分析】設(shè)漲價(jià)4x元,則銷量為(500-40x),利潤為(10+4x),再由每月賺8000
元,可得方程,解方程即可.
【解答】解:設(shè)漲價(jià)4x元,則銷量為(500-40x),利潤為(10+4X),
由題意得,(500-40x)x(10+4x)=8000,
整理得,5000+2000X-400x-160x2=8000,
解得:X】嘲/圖,
當(dāng)X14時(shí),則漲價(jià)10元,銷量為:400件;
當(dāng)*2=停|時(shí),則漲價(jià)30元,銷量為:200件.
答:當(dāng)售價(jià)定為60元時(shí),每月應(yīng)進(jìn)400件襯衫;售價(jià)定為80元時(shí),每月應(yīng)進(jìn)200件
襯衫.
【剖析】本題考查的是一元二次方程的應(yīng)用,根據(jù)題意正確找出等量關(guān)系、列出方程是
解題的關(guān)鍵,注意分情況討論思想的應(yīng)用.
21.
【分析】(1)利用第3個(gè)方程和第4個(gè)方程中二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)的特征
可確定第2018個(gè)方程;
(2)利用(1)中二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)的特征可確定第n個(gè)方程,然后利
用因式分解法解方程;
(3)利用方程的解中都有-1進(jìn)行回答.
【解答】解:(1)x2-2016x-2017=0;
(2)第n個(gè)方程是x2-(n-2)x-(n-l)=0,解得Xi=-l,X2=n-l.
(3)這列一元二次方程的解中均有一個(gè)根為-1.
故答案為x2-2016x-2017=0.
【剖析】本題考查了解一元二次方程-因式分解法:就是先把方程的右邊化為0,再把
左邊通過因式分解化為兩個(gè)一次因式的積的形式那么這兩個(gè)因式的值就都有可能為0,
這就能得到兩個(gè)一元一次方程的解,這樣也就把原方程進(jìn)行了降
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度辦公樓窗簾節(jié)能減排承包合同4篇
- 二零二五年度農(nóng)機(jī)租賃合同與市場拓展合作
- 2025年度摩托車租賃企業(yè)信用評價(jià)合同4篇
- 二零二五年度新型城鎮(zhèn)化泥工施工合同范本4篇
- 2025年度個(gè)人貨車租賃與智能物流配送平臺(tái)合作合同4篇
- 二零二五年度農(nóng)產(chǎn)品代銷與農(nóng)產(chǎn)品標(biāo)準(zhǔn)化生產(chǎn)合作合同
- 2025年度棉花新品種研發(fā)與應(yīng)用推廣合同3篇
- 2025版家政服務(wù)行業(yè)農(nóng)民工勞動(dòng)合同示范3篇
- 二零二五年度農(nóng)業(yè)用地土地租賃與農(nóng)業(yè)廢棄物處理合作合同4篇
- 2025年度智慧城市建設(shè)貸款合同-@-1
- 足浴技師與店內(nèi)禁止黃賭毒協(xié)議書范文
- 中國高血壓防治指南(2024年修訂版)要點(diǎn)解讀
- 2024-2030年中國光電干擾一體設(shè)備行業(yè)發(fā)展現(xiàn)狀與前景預(yù)測分析研究報(bào)告
- 湖南省岳陽市岳陽樓區(qū)2023-2024學(xué)年七年級(jí)下學(xué)期期末數(shù)學(xué)試題(解析版)
- 農(nóng)村自建房安全合同協(xié)議書
- 杜仲葉藥理作用及臨床應(yīng)用研究進(jìn)展
- 4S店售后服務(wù)6S管理新規(guī)制度
- 高性能建筑鋼材的研發(fā)與應(yīng)用
- 無線廣播行業(yè)現(xiàn)狀分析
- 漢語言溝通發(fā)展量表(長表)-詞匯及手勢(8-16月齡)
- 高速公路相關(guān)知識(shí)講座
評論
0/150
提交評論