因式分解教案模板錦集五篇_第1頁
因式分解教案模板錦集五篇_第2頁
因式分解教案模板錦集五篇_第3頁
因式分解教案模板錦集五篇_第4頁
因式分解教案模板錦集五篇_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

因式分解教案模板錦集五篇因式分解教案篇1

教學(xué)目標(biāo)

1、會運(yùn)用因式分解進(jìn)行簡單的多項(xiàng)式除法。

2、會運(yùn)用因式分解解簡單的方程。

二、教學(xué)重點(diǎn)與難點(diǎn)教學(xué)重點(diǎn):

教學(xué)重點(diǎn)

因式分解在多項(xiàng)式除法和解方程兩方面的應(yīng)用。

教學(xué)難點(diǎn):

應(yīng)用因式分解解方程涉及較多的推理過程。

三、教學(xué)過程

(一)引入新課

1、知識回顧(1)因式分解的幾種方法:①提取公因式法:ma+mb=m(a+b)②應(yīng)用平方差公式:=(a+b)(a—b)③應(yīng)用完全平方公式:a2ab+b=(ab)(2)課前熱身:①分解因式:(x+4)y—16xy

(二)師生互動,講授新課

1、運(yùn)用因式分解進(jìn)行多項(xiàng)式除法例1計(jì)算:(1)(2ab—8ab)(4a—b)(2)(4x—9)(3—2x)解:(1)(2ab—8ab)(4a—b)=—2ab(4a—b)(4a—b)=—2ab(2)(4x—9)(3—2x)=(2x+3)(2x—3)[—(2x—3)]=—(2x+3)=—2x—3

一個小問題:這里的x能等于3/2嗎?為什么?

想一想:那么(4x—9)(3—2x)呢?練習(xí):課本P162課內(nèi)練習(xí)

合作學(xué)習(xí)

想一想:如果已知()()=0,那么這兩個括號內(nèi)應(yīng)填入怎樣的數(shù)或代數(shù)式子才能夠滿足條件呢?(讓學(xué)生自己思考、相互之間討論!)事實(shí)上,若AB=0,則有下面的結(jié)論:(1)A和B同時都為零,即A=0,且B=0(2)A和B中有一個為零,即A=0,或B=0

試一試:你能運(yùn)用上面的結(jié)論解方程(2x+1)(3x—2)=0嗎?3、運(yùn)用因式分解解簡單的方程例2解下列方程:(1)2x+x=0(2)(2x—1)=(x+2)解:x(x+1)=0解:(2x—1)—(x+2)=0則x=0,或2x+1=0(3x+1)(x—3)=0原方程的根是x1=0,x2=則3x+1=0,或x—3=0原方程的根是x1=,x2=3注:只含有一個未知數(shù)的方程的解也叫做根,當(dāng)方程的根多于一個時,常用帶足標(biāo)的字母表示,比如:x1,x2

等練習(xí):課本P162課內(nèi)練習(xí)2

做一做!對于方程:x+2=(x+2),你是如何解該方程的,方程左右兩邊能同時除以(x+2)嗎?為什么?

教師總結(jié):運(yùn)用因式分解解方程的基本步驟(1)如果方程的.右邊是零,那么把左邊分解因式,轉(zhuǎn)化為解若干個一元一次方程;(2)如果方程的兩邊都不是零,那么應(yīng)該先移項(xiàng),把方程的右邊化為零以后再進(jìn)行解方程;遇到方程兩邊有公因式,同樣需要先進(jìn)行移項(xiàng)使右邊化為零,切忌兩邊同時除以公因式!4、知識延伸解方程:(x+4)—16x=0解:將原方程左邊分解因式,得(x+4)—(4x)=0(x+4+4x)(x+4—4x)=0(x+4x+4)(x—4x+4)=0(x+2)(x—2)=0接著繼續(xù)解方程,5、練一練①已知a、b、c為三角形的三邊,試判斷a—2ab+b—c大于零?小于零?等于零?解:a—2ab+b—c=(a—b)—c=(a—b+c)(a—b—c)∵a、b、c為三角形的三邊a+c﹥ba﹤b+ca—b+c﹥0a—b—c﹤0即:(a—b+c)(a—b—c)﹤0,因此a—2ab+b—c小于零。6、挑戰(zhàn)極限①已知:x=20xx,求∣4x—4x+3∣—4∣x+2x+2∣+13x+6的值。解:∵4x—4x+3=(4x—4x+1)+2=(2x—1)+20x+2x+2=(x+2x+1)+1=(x+1)+10∣4x—4x+3∣—4∣x+2x+2∣+13x+6=4x—4x+3—4(x+2x+2)+13x+6=4x—4x+3—4x—8x—8+13x+6=x+1即:原式=x+1=20xx+1=20xx

(三)梳理知識,總結(jié)收獲因式分解的兩種應(yīng)用:

(1)運(yùn)用因式分解進(jìn)行多項(xiàng)式除法

(2)運(yùn)用因式分解解簡單的方程

(四)布置課后作業(yè)

作業(yè)本6、42、課本P163作業(yè)題(選做)

因式分解教案篇2

教學(xué)目標(biāo):

1、進(jìn)一步鞏固因式分解的概念;2、鞏固因式分解常用的三種方法

3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解4、應(yīng)用因式分解來解決一些實(shí)際問題

5、體驗(yàn)應(yīng)用知識解決問題的樂趣

教學(xué)重點(diǎn):靈活運(yùn)用因式分解解決問題

教學(xué)難點(diǎn):靈活運(yùn)用恰當(dāng)?shù)囊蚴椒纸獾姆椒?,拓展練?xí)2、3

教學(xué)過程:

一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值

利用因式分解往往能將一些復(fù)雜的運(yùn)算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。

二、知識回顧

1、因式分解定義:把一個多項(xiàng)式化成幾個整式積的形式,這種變形叫做把這個多項(xiàng)式分解因式.

判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)

(1).x2-4y2=(x+2y)(x-2y)因式分解(2).2x(x-3y)=2x2-6xy整式乘法

(3).(5a-1)2=25a2-10a+1整式乘法(4).x2+4x+4=(x+2)2因式分解

(5).(a-3)(a+3)=a2-9整式乘法(6).m2-4=(m+4)(m-4)因式分解

(7).2πR+2πr=2π(R+r)因式分解

2、.規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程.

分解因式要注意以下幾點(diǎn):(1).分解的對象必須是多項(xiàng)式.

(2).分解的'結(jié)果一定是幾個整式的乘積的形式.(3).要分解到不能分解為止.

3、因式分解的方法

提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1)公因式的概念;公因式的求法

公式法:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2+2ab+b2=(a+b)2

4、強(qiáng)化訓(xùn)練

試一試把下列各式因式分解:

(1).1-x2=(1+x)(1-x)(2).4a2+4a+1=(2a+1)2

(3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)

三、例題講解

例1、分解因式

(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)

(3)(4)y2+y+例2、分解因式

1、a3-ab2=2、(a-b)(x-y)-(b-a)(x+y)=3、(a+b)2+2(a+b)-15=

4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=

例3、分解因式

1、72-2(13x-7)22、8a2b2-2a4b-8b3

三、知識應(yīng)用

1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)

3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2

4、.若x=-3,求20x2-60x的值.5、1993-199能被200整除嗎?還能被哪些整數(shù)整除?

四、拓展應(yīng)用

1.計(jì)算:7652×17-2352×17解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)

2、20042+20xx被20xx整除嗎?

3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).

五、課堂小結(jié):今天你對因式分解又有哪些新的認(rèn)識?

因式分解教案篇3

學(xué)習(xí)目標(biāo)

1、學(xué)會用公式法因式法分解

2、綜合運(yùn)用提取公式法、公式法分解因式

學(xué)習(xí)重難點(diǎn)重點(diǎn):

完全平方公式分解因式.

難點(diǎn):綜合運(yùn)用兩種公式法因式分解

自學(xué)過程設(shè)計(jì)

完全平方公式:

完全平方公式的逆運(yùn)用:

做一做:

1.(1)16x2-8x+_______=(4x-1)2;

(2)_______+6x+9=(x+3)2;

(3)16x2+_______+9y2=(4x+3y)2;

(4)(a-b)2-2(a-b)+1=(______-1)2.

2.在代數(shù)式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序號)

3.下列因式分解正確的是()

A.x2+y2=(x+y)2B.x2-xy+x2=(x-y)2

C.1+4x-4x2=(1-2x)2D.4-4x+x2=(x-2)2

4.分解因式:(1)x2-22x+121(2)-y2-14y-49(3)(a+b)2+2(a+b)+1

5.計(jì)算:20062-40102006+20052=___________________.

6.若x+y=1,則x2+xy+y2的值是_________________.

想一想

你還有哪些地方不是很懂?請寫出來。

____________________________________________________________________________________預(yù)習(xí)展示一:

1.判別下列各式是不是完全平方式.

2、把下列各式因式分解:

(1)-x2+4xy-4y2

(2)3ax2+6axy+3ay2

(3)(2x+y)2-6(2x+y)+9

應(yīng)用探究:

1、用簡便方法計(jì)算

49.92+9.98+0.12

拓展提高:

(1)(a2+b2)(a2+b210)+25=0求a2+b2

(2)4x2+y2-4xy-12x+6y+9=0

求x、y關(guān)系

(3)分解因式:m4+4

教后反思考察利用公式法因式分解的題目不會很難,但是需要學(xué)生記住公式的`形式,之后利用公式把式子進(jìn)行變形,從而達(dá)到進(jìn)行因式分解的目的,但是這里有用到實(shí)際中去的例子,對學(xué)生來說會難一些。

因式分解教案篇4

課型復(fù)習(xí)課教法講練結(jié)合

教學(xué)目標(biāo)(知識、能力、教育)

1.了解分解因式的意義,會用提公因式法、平方差公式和完全平方公式(直接用公式不超過兩次)分解因式(指數(shù)是正整數(shù)).

2.通過乘法公式,的逆向變形,進(jìn)一步發(fā)展學(xué)生觀察、歸納、類比、概括等能力,發(fā)展有條理的思考及語言表達(dá)能力

教學(xué)重點(diǎn)掌握用提取公因式法、公式法分解因式

教學(xué)難點(diǎn)根據(jù)題目的形式和特征恰當(dāng)選擇方法進(jìn)行分解,以提高綜合解題能力。

教學(xué)媒體學(xué)案

教學(xué)過程

一:【課前預(yù)習(xí)】

(一):【知識梳理】

1.分解因式:把一個多項(xiàng)式化成的形式,這種變形叫做把這個多項(xiàng)式分解因式.

2.分解困式的方法:

⑴提公團(tuán)式法:如果一個多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個公因式提出來,從而將多項(xiàng)式化成兩個因式乘積的形式,這種分解因式的方法叫做提公因式法.

⑵運(yùn)用公式法:平方差公式:;

完全平方公式:;

3.分解因式的步驟:

(1)分解因式時,首先考慮是否有公因式,如果有公因式,一定先提取公團(tuán)式,然后再考慮是否能用公式法分解.

(2)在用公式時,若是兩項(xiàng),可考慮用平方差公式;若是三項(xiàng),可考慮用完全平方公式;若是三項(xiàng)以上,可先進(jìn)行適當(dāng)?shù)?分組,然后分解因式。

4.分解因式時常見的思維誤區(qū):

提公因式時,其公因式應(yīng)找字母指數(shù)最低的,而不是以首項(xiàng)為準(zhǔn).若有一項(xiàng)被全部提出,括號內(nèi)的項(xiàng)1易漏掉.分解不徹底,如保留中括號形式,還能繼續(xù)分解等

(二):【課前練習(xí)】

1.下列各組多項(xiàng)式中沒有公因式的是()

A.3x-2與6x2-4xB.3(a-b)2與11(b-a)3

C.mxmy與nynxD.abac與abbc

2.下列各題中,分解因式錯誤的是()

3.列多項(xiàng)式能用平方差公式分解因式的是()

4.分解因式:x2+2xy+y2-4=_____

5.分解因式:(1);

(2);(3);

(4);(5)以上三題用了公式

二:【經(jīng)典考題剖析】

1.分解因式:

(1);(2);(3);(4)

分析:①因式分解時,無論有幾項(xiàng),首先考慮提取公因式。提公因式時,不僅注意數(shù),也要注意字母,字母可能是單項(xiàng)式也可能是多項(xiàng)式,一次提盡。

②當(dāng)某項(xiàng)完全提出后,該項(xiàng)應(yīng)為1

③注意,

④分解結(jié)果(1)不帶中括號;(2)數(shù)字因數(shù)在前,字母因數(shù)在后;單項(xiàng)式在前,多項(xiàng)式在后;(3)相同因式寫成冪的形式;(4)分解結(jié)果應(yīng)在指定范圍內(nèi)不能再分解為止;若無指定范圍,一般在有理數(shù)范圍內(nèi)分解。

2.分解因式:(1);(2);(3)

分析:對于二次三項(xiàng)齊次式,將其中一個字母看作末知數(shù),另一個字母視為常數(shù)。首先考慮提公因式后,由余下因式的項(xiàng)數(shù)為3項(xiàng),可考慮完全平方式或十字相乘法繼續(xù)分解;如果項(xiàng)數(shù)為2,可考慮平方差、立方差、立方和公式。(3)題無公因式,項(xiàng)數(shù)為2項(xiàng),可考慮平方差公式先分解開,再由項(xiàng)數(shù)考慮選擇方法繼續(xù)分解。

3.計(jì)算:(1)

(2)

分析:(1)此題先分解因式后約分,則余下首尾兩數(shù)。

(2)分解后,便有規(guī)可循,再求1到20xx的和。

4.分解因式:(1);(2)

分析:對于四項(xiàng)或四項(xiàng)以上的多項(xiàng)式的因式分解,一般采用分組分解法,

5.(1)在實(shí)數(shù)范圍內(nèi)分解因式:;

(2)已知、、是△ABC的三邊,且滿足,

求證:△ABC為等邊三角形。

分析:此題給出的是三邊之間的關(guān)系,而要證等邊三角形,則須考慮證,

從已知給出的等式結(jié)構(gòu)看出,應(yīng)構(gòu)造出三個完全平方式,

即可得證,將原式兩邊同乘以2即可。略證:

即△ABC為等邊三角形。

三:【課后訓(xùn)練】

1.若是一個完全平方式,那么的值是()

A.24B.12C.12D.24

2.把多項(xiàng)式因式分解的結(jié)果是()

A.B.C.D.

3.如果二次三項(xiàng)式可分解為,則的值為()

A.-1B.1C.-2D.2

4.已知可以被在60~70之間的兩個整數(shù)整除,則這兩個數(shù)是()

A.61、63B.61、65C.61、67D.63、65

5.計(jì)算:19982002=,=。

6.若,那么=。

7.、滿足,分解因式=。

8.因式分解:

(1);(2)

(3);(4)

9.觀察下列等式:

想一想,等式左邊各項(xiàng)冪的底數(shù)與右邊冪的底數(shù)有何關(guān)系?猜一猜可引出什么規(guī)律?用等式將其規(guī)律表示出來:。

10.已知是△ABC的三邊,且滿足,試判斷△ABC的形狀。閱讀下面解題過程:

解:由得:

即③

△ABC為Rt△。④

試問:以上解題過程是否正確:;若不正確,請指出錯在哪一步?(填);錯誤原因是;本題結(jié)論應(yīng)為。

四:【課后小結(jié)】

布置作業(yè)地綱

因式分解教案篇5

教學(xué)設(shè)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論