版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年安徽省安慶一中安師大附中銅陵一中馬鞍山二中高三上數(shù)學(xué)期末調(diào)研試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.將函數(shù)的圖象向右平移個(gè)周期后,所得圖象關(guān)于軸對稱,則的最小正值是()A. B. C. D.2.三棱錐的各個(gè)頂點(diǎn)都在求的表面上,且是等邊三角形,底面,,,若點(diǎn)在線段上,且,則過點(diǎn)的平面截球所得截面的最小面積為()A. B. C. D.3.已知拋物線的焦點(diǎn)為,若拋物線上的點(diǎn)關(guān)于直線對稱的點(diǎn)恰好在射線上,則直線被截得的弦長為()A. B. C. D.4.若的展開式中的常數(shù)項(xiàng)為-12,則實(shí)數(shù)的值為()A.-2 B.-3 C.2 D.35.某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點(diǎn)在正視圖上的對應(yīng)點(diǎn)為,圓柱表面上的點(diǎn)在左視圖上的對應(yīng)點(diǎn)為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長度為()A. B. C. D.26.趙爽是我國古代數(shù)學(xué)家、天文學(xué)家,大約在公元222年,趙爽為《周髀算經(jīng)》一書作序時(shí),介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長得到的正方形是由4個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的).類比“趙爽弦圖”.可類似地構(gòu)造如下圖所示的圖形,它是由3個(gè)全等的三角形與中間的一個(gè)小等邊三角形拼成一個(gè)大等邊三角形.設(shè),若在大等邊三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小等邊三角形(陰影部分)的概率是()A. B. C. D.7.設(shè)、,數(shù)列滿足,,,則()A.對于任意,都存在實(shí)數(shù),使得恒成立B.對于任意,都存在實(shí)數(shù),使得恒成立C.對于任意,都存在實(shí)數(shù),使得恒成立D.對于任意,都存在實(shí)數(shù),使得恒成立8.執(zhí)行如圖所示的程序框圖,若輸出的,則輸入的整數(shù)的最大值為()A.7 B.15 C.31 D.639.如圖,棱長為的正方體中,為線段的中點(diǎn),分別為線段和棱上任意一點(diǎn),則的最小值為()A. B. C. D.10.平行四邊形中,已知,,點(diǎn)、分別滿足,,且,則向量在上的投影為()A.2 B. C. D.11.已知全集,則集合的子集個(gè)數(shù)為()A. B. C. D.12.已知函數(shù),集合,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)實(shí)數(shù),滿足,則的最大值是______.14.設(shè)、、、、是表面積為的球的球面上五點(diǎn),四邊形為正方形,則四棱錐體積的最大值為__________.15.有以下四個(gè)命題:①在中,的充要條件是;②函數(shù)在區(qū)間上存在零點(diǎn)的充要條件是;③對于函數(shù),若,則必不是奇函數(shù);④函數(shù)與的圖象關(guān)于直線對稱.其中正確命題的序號為______.16.若在上單調(diào)遞減,則的取值范圍是_______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)當(dāng)時(shí),證明,在恒成立;(2)若在處取得極大值,求的取值范圍.18.(12分)已知首項(xiàng)為2的數(shù)列滿足.(1)證明:數(shù)列是等差數(shù)列.(2)令,求數(shù)列的前項(xiàng)和.19.(12分)已知數(shù)列中,,前項(xiàng)和為,若對任意的,均有(是常數(shù),且)成立,則稱數(shù)列為“數(shù)列”.(1)若數(shù)列為“數(shù)列”,求數(shù)列的前項(xiàng)和;(2)若數(shù)列為“數(shù)列”,且為整數(shù),試問:是否存在數(shù)列,使得對任意,成立?如果存在,求出這樣數(shù)列的的所有可能值,如果不存在,請說明理由.20.(12分)選修4-2:矩陣與變換(本小題滿分10分)已知矩陣A=(k≠0)的一個(gè)特征向量為α=,A的逆矩陣A-1對應(yīng)的變換將點(diǎn)(3,1)變?yōu)辄c(diǎn)(1,1).求實(shí)數(shù)a,k的值.21.(12分)已知是等腰直角三角形,.分別為的中點(diǎn),沿將折起,得到如圖所示的四棱錐.(Ⅰ)求證:平面平面.(Ⅱ)當(dāng)三棱錐的體積取最大值時(shí),求平面與平面所成角的正弦值.22.(10分)設(shè)橢圓的離心率為,左、右焦點(diǎn)分別為,點(diǎn)D在橢圓C上,的周長為.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過圓上任意一點(diǎn)P作圓E的切線l,若l與橢圓C交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),求證:為定值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
由函數(shù)的圖象平移變換公式求出變換后的函數(shù)解析式,再利用誘導(dǎo)公式得到關(guān)于的方程,對賦值即可求解.【詳解】由題意知,函數(shù)的最小正周期為,即,由函數(shù)的圖象平移變換公式可得,將函數(shù)的圖象向右平移個(gè)周期后的解析式為,因?yàn)楹瘮?shù)的圖象關(guān)于軸對稱,所以,即,所以當(dāng)時(shí),有最小正值為.故選:D【點(diǎn)睛】本題考查函數(shù)的圖象平移變換公式和三角函數(shù)誘導(dǎo)公式及正余弦函數(shù)的性質(zhì);熟練掌握誘導(dǎo)公式和正余弦函數(shù)的性質(zhì)是求解本題的關(guān)鍵;屬于中檔題、??碱}型.2、A【解析】
由題意畫出圖形,求出三棱錐S-ABC的外接球的半徑,再求出外接球球心到D的距離,利用勾股定理求得過點(diǎn)D的平面截球O所得截面圓的最小半徑,則答案可求.【詳解】如圖,設(shè)三角形ABC外接圓的圓心為G,則外接圓半徑AG=,設(shè)三棱錐S-ABC的外接球的球心為O,則外接球的半徑R=取SA中點(diǎn)E,由SA=4,AD=3SD,得DE=1,所以O(shè)D=.則過點(diǎn)D的平面截球O所得截面圓的最小半徑為所以過點(diǎn)D的平面截球O所得截面的最小面積為故選:A【點(diǎn)睛】本題考查三棱錐的外接球問題,還考查了求截面的最小面積,屬于較難題.3、B【解析】
由焦點(diǎn)得拋物線方程,設(shè)點(diǎn)的坐標(biāo)為,根據(jù)對稱可求出點(diǎn)的坐標(biāo),寫出直線方程,聯(lián)立拋物線求交點(diǎn),計(jì)算弦長即可.【詳解】拋物線的焦點(diǎn)為,則,即,設(shè)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,如圖:∴,解得,或(舍去),∴∴直線的方程為,設(shè)直線與拋物線的另一個(gè)交點(diǎn)為,由,解得或,∴,∴,故直線被截得的弦長為.故選:B.【點(diǎn)睛】本題主要考查了拋物線的標(biāo)準(zhǔn)方程,簡單幾何性質(zhì),點(diǎn)關(guān)于直線對稱,屬于中檔題.4、C【解析】
先研究的展開式的通項(xiàng),再分中,取和兩種情況求解.【詳解】因?yàn)榈恼归_式的通項(xiàng)為,所以的展開式中的常數(shù)項(xiàng)為:,解得,故選:C.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的通項(xiàng)公式,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.5、B【解析】
首先根據(jù)題中所給的三視圖,得到點(diǎn)M和點(diǎn)N在圓柱上所處的位置,將圓柱的側(cè)面展開圖平鋪,點(diǎn)M、N在其四分之一的矩形的對角線的端點(diǎn)處,根據(jù)平面上兩點(diǎn)間直線段最短,利用勾股定理,求得結(jié)果.【詳解】根據(jù)圓柱的三視圖以及其本身的特征,將圓柱的側(cè)面展開圖平鋪,可以確定點(diǎn)M和點(diǎn)N分別在以圓柱的高為長方形的寬,圓柱底面圓周長的四分之一為長的長方形的對角線的端點(diǎn)處,所以所求的最短路徑的長度為,故選B.點(diǎn)睛:該題考查的是有關(guān)幾何體的表面上兩點(diǎn)之間的最短距離的求解問題,在解題的過程中,需要明確兩個(gè)點(diǎn)在幾何體上所處的位置,再利用平面上兩點(diǎn)間直線段最短,所以處理方法就是將面切開平鋪,利用平面圖形的相關(guān)特征求得結(jié)果.6、A【解析】
根據(jù)幾何概率計(jì)算公式,求出中間小三角形區(qū)域的面積與大三角形面積的比值即可.【詳解】在中,,,,由余弦定理,得,所以.所以所求概率為.故選A.【點(diǎn)睛】本題考查了幾何概型的概率計(jì)算問題,是基礎(chǔ)題.7、D【解析】
取,可排除AB;由蛛網(wǎng)圖可得數(shù)列的單調(diào)情況,進(jìn)而得到要使,只需,由此可得到答案.【詳解】取,,數(shù)列恒單調(diào)遞增,且不存在最大值,故排除AB選項(xiàng);由蛛網(wǎng)圖可知,存在兩個(gè)不動(dòng)點(diǎn),且,,因?yàn)楫?dāng)時(shí),數(shù)列單調(diào)遞增,則;當(dāng)時(shí),數(shù)列單調(diào)遞減,則;所以要使,只需要,故,化簡得且.故選:D.【點(diǎn)睛】本題考查遞推數(shù)列的綜合運(yùn)用,考查邏輯推理能力,屬于難題.8、B【解析】試題分析:由程序框圖可知:①,;②,;③,;④,;⑤,.第⑤步后輸出,此時(shí),則的最大值為15,故選B.考點(diǎn):程序框圖.9、D【解析】
取中點(diǎn),過作面,可得為等腰直角三角形,由,可得,當(dāng)時(shí),最小,由,故,即可求解.【詳解】取中點(diǎn),過作面,如圖:則,故,而對固定的點(diǎn),當(dāng)時(shí),最小.此時(shí)由面,可知為等腰直角三角形,,故.故選:D【點(diǎn)睛】本題考查了空間幾何體中的線面垂直、考查了學(xué)生的空間想象能力,屬于中檔題.10、C【解析】
將用向量和表示,代入可求出,再利用投影公式可得答案.【詳解】解:,得,則向量在上的投影為.故選:C.【點(diǎn)睛】本題考查向量的幾何意義,考查向量的線性運(yùn)算,將用向量和表示是關(guān)鍵,是基礎(chǔ)題.11、C【解析】
先求B.再求,求得則子集個(gè)數(shù)可求【詳解】由題=,則集合,故其子集個(gè)數(shù)為故選C【點(diǎn)睛】此題考查了交、并、補(bǔ)集的混合運(yùn)算及子集個(gè)數(shù),熟練掌握各自的定義是解本題的關(guān)鍵,是基礎(chǔ)題12、C【解析】
分別求解不等式得到集合,再利用集合的交集定義求解即可.【詳解】,,∴.故選C.【點(diǎn)睛】本題主要考查了集合的基本運(yùn)算,難度容易.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
根據(jù)目標(biāo)函數(shù)的解析式形式,分析目標(biāo)函數(shù)的幾何意義,然后判斷求出目標(biāo)函數(shù)取得最優(yōu)解的點(diǎn)的坐標(biāo),即可求解.【詳解】作出實(shí)數(shù),滿足表示的平面區(qū)域,如圖所示:由可得,則表示直線在軸上的截距,截距越小,越大.由可得,此時(shí)最大為1,故答案為:1.【點(diǎn)睛】本題主要考查線性規(guī)劃知識的運(yùn)用,考查學(xué)生的計(jì)算能力,考查數(shù)形結(jié)合的數(shù)學(xué)思想.14、【解析】
根據(jù)球的表面積求得球的半徑,設(shè)球心到四棱錐底面的距離為,求得四棱錐的表達(dá)式,利用基本不等式求得體積的最大值.【詳解】由已知可得球的半徑,設(shè)球心到四棱錐底面的距離為,棱錐的高為,底面邊長為,的體積,當(dāng)且僅當(dāng)時(shí)等號成立.故答案為:【點(diǎn)睛】本小題主要考查球的表面積有關(guān)計(jì)算,考查球的內(nèi)接四棱錐體積的最值的求法,屬于中檔題.15、①【解析】
由三角形的正弦定理和邊角關(guān)系可判斷①;由零點(diǎn)存在定理和二次函數(shù)的圖象可判斷②;由,結(jié)合奇函數(shù)的定義,可判斷③;由函數(shù)圖象對稱的特點(diǎn)可判斷④.【詳解】解:①在中,,故①正確;②函數(shù)在區(qū)間上存在零點(diǎn),比如在存在零點(diǎn),但是,故②錯(cuò)誤;③對于函數(shù),若,滿足,但可能為奇函數(shù),故③錯(cuò)誤;④函數(shù)與的圖象,可令,即,即有和的圖象關(guān)于直線對稱,即對稱,故④錯(cuò)誤.故答案為:①.【點(diǎn)睛】本題主要考查函數(shù)的零點(diǎn)存在定理和對稱性、奇偶性的判斷,考查判斷能力和推理能力,屬于中檔題.16、【解析】
由題意可得導(dǎo)數(shù)在恒成立,解出即可.【詳解】解:由題意,,當(dāng)時(shí),顯然,符合題意;當(dāng)時(shí),在恒成立,∴,∴,故答案為:.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)根據(jù),求導(dǎo),令,用導(dǎo)數(shù)法求其最小值.設(shè)研究在處左正右負(fù),求導(dǎo),分,,三種情況討論求解.【詳解】(1)因?yàn)?,所以,令,則,所以是的增函數(shù),故,即.因?yàn)樗?,①?dāng)時(shí),,所以函數(shù)在上單調(diào)遞增.若,則若,則所以函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是,所以在處取得極小值,不符合題意,②當(dāng)時(shí),所以函數(shù)在上單調(diào)遞減.若,則若,則所以的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是,所以在處取得極大值,符合題意.③當(dāng)時(shí),,使得,即,但當(dāng)時(shí),即所以函數(shù)在上單調(diào)遞減,所以,即函數(shù))在上單調(diào)遞減,不符合題意綜上所述,的取值范圍是【點(diǎn)睛】本題主要考查導(dǎo)數(shù)與函數(shù)的單調(diào)性和極值,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于難題.18、(1)見解析;(2)【解析】
(1)由原式可得,等式兩端同時(shí)除以,可得到,即可證明結(jié)論;(2)由(1)可求得的表達(dá)式,進(jìn)而可求得的表達(dá)式,然后求出的前項(xiàng)和即可.【詳解】(1)證明:因?yàn)?所以,所以,從而,因?yàn)?所以,故數(shù)列是首項(xiàng)為1,公差為1的等差數(shù)列.(2)由(1)可知,則,因?yàn)?所以,則.【點(diǎn)睛】本題考查了等差數(shù)列的證明,考查了等差數(shù)列及等比數(shù)列的前項(xiàng)和公式的應(yīng)用,考查了學(xué)生的計(jì)算求解能力,屬于中檔題.19、(1)(2)存在,【解析】
由數(shù)列為“數(shù)列”可得,,,兩式相減得,又,利用等比數(shù)列通項(xiàng)公式即可求出,進(jìn)而求出;由題意得,,,兩式相減得,,據(jù)此可得,當(dāng)時(shí),,進(jìn)而可得,即數(shù)列為常數(shù)列,進(jìn)而可得,結(jié)合,得到關(guān)于的不等式,再由時(shí),且為整數(shù)即可求出符合題意的的所有值.【詳解】因?yàn)閿?shù)列為“數(shù)列”,所以,故,兩式相減得,在中令,則可得,故所以,所以數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,所以,因?yàn)?,所?(2)由題意得,故,兩式相減得所以,當(dāng)時(shí),又因?yàn)樗援?dāng)時(shí),所以成立,所以當(dāng)時(shí),數(shù)列是常數(shù)列,所以因?yàn)楫?dāng)時(shí),成立,所以,所以在中令,因?yàn)椋钥傻?,所以,由時(shí),且為整數(shù),可得,把分別代入不等式可得,,所以存在數(shù)列符合題意,的所有值為.【點(diǎn)睛】本題考查數(shù)列的新定義、等比數(shù)列的通項(xiàng)公式和數(shù)列遞推公式的運(yùn)用;考查運(yùn)算求解能力、邏輯推理能力和對新定義的理解能力;通過反復(fù)利用遞推公式,得到數(shù)列為常數(shù)列是求解本題的關(guān)鍵;屬于綜合型強(qiáng)、難度大型試題.20、解:設(shè)特征向量為α=對應(yīng)的特征值為λ,則=λ,即因?yàn)閗≠0,所以a=2.5分因?yàn)椋訟=,即=,所以2+k=3,解得k=2.綜上,a=2,k=2.20分【解析】試題分析:由特征向量求矩陣A,由逆矩陣求k考點(diǎn):特征向量,逆矩陣點(diǎn)評:本題主要考查了二階矩
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 活動(dòng)腳手架搭設(shè)方案
- 2024年湖北城市建設(shè)職業(yè)技術(shù)學(xué)院高職單招語文歷年參考題庫含答案解析
- 二零二五年度智能汽車典當(dāng)借款管理協(xié)議3篇
- 2020中考英語復(fù)習(xí)方案第一篇教材考點(diǎn)梳理第20課時(shí)Units4九上課件牛津譯林版
- 義務(wù)教育課程標(biāo)準(zhǔn)道德與法治
- 2024年瀘州醫(yī)療器械職業(yè)學(xué)院高職單招語文歷年參考題庫含答案解析
- 二零二五年度綠色農(nóng)產(chǎn)品倉儲(chǔ)與銷售合作合同3篇
- 2024年阜新市婦幼保健院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點(diǎn)附帶答案
- 2024年江西陶瓷工藝美術(shù)職業(yè)技術(shù)學(xué)院高職單招語文歷年參考題庫含答案解析
- 2024年江蘇農(nóng)牧科技職業(yè)學(xué)院高職單招職業(yè)技能測驗(yàn)歷年參考題庫(頻考版)含答案解析
- 2024年資格考試-WSET二級認(rèn)證考試近5年真題集錦(頻考類試題)帶答案
- 試卷中國電子學(xué)會(huì)青少年軟件編程等級考試標(biāo)準(zhǔn)python三級練習(xí)
- 公益慈善機(jī)構(gòu)數(shù)字化轉(zhuǎn)型行業(yè)三年發(fā)展洞察報(bào)告
- 飼料廠現(xiàn)場管理類隱患排查治理清單
- 【名著閱讀】《紅巖》30題(附答案解析)
- Starter Unit 2 同步練習(xí)人教版2024七年級英語上冊
- 分?jǐn)?shù)的加法、減法、乘法和除法運(yùn)算規(guī)律
- 合作學(xué)習(xí)構(gòu)建初中語文分層教學(xué)思考
- 成功九大理念
- 產(chǎn)品生產(chǎn)進(jìn)度計(jì)劃匯總
- 【閱讀提升】部編版語文五年級下冊第八單元閱讀要素解析 類文閱讀課外閱讀過關(guān)(含答案)
評論
0/150
提交評論