2024屆廣東省廣州白云區(qū)六校聯(lián)考中考二模數(shù)學(xué)試題含解析_第1頁
2024屆廣東省廣州白云區(qū)六校聯(lián)考中考二模數(shù)學(xué)試題含解析_第2頁
2024屆廣東省廣州白云區(qū)六校聯(lián)考中考二模數(shù)學(xué)試題含解析_第3頁
2024屆廣東省廣州白云區(qū)六校聯(lián)考中考二模數(shù)學(xué)試題含解析_第4頁
2024屆廣東省廣州白云區(qū)六校聯(lián)考中考二模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024學(xué)年廣東省廣州白云區(qū)六校聯(lián)考中考二模數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,直線AB與?MNPQ的四邊所在直線分別交于A、B、C、D,則圖中的相似三角形有()A.4對B.5對C.6對D.7對2.有三張正面分別標(biāo)有數(shù)字-2,3,4的不透明卡片,它們除數(shù)字不同外,其余全部相同,現(xiàn)將它們背面朝上洗勻后,從中任取一張(不放回),再從剩余的卡片中任取一張,則兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的概率是()A. B. C. D.3.從一個邊長為3cm的大立方體挖去一個邊長為1cm的小立方體,得到的幾何體如圖所示,則該幾何體的左視圖正確的是()A. B. C. D.4.根據(jù)總書記在“一帶一路”國際合作高峰論壇開幕式上的演講,中國將在未來3年向參與“一帶一路”建設(shè)的發(fā)展中國家和國際組織提供60000000000元人民幣援助,建設(shè)更多民生項目,其中數(shù)據(jù)60000000000用科學(xué)記數(shù)法表示為()A.0.6×1010 B.0.6×1011 C.6×1010 D.6×10115.如圖,在矩形ABCD中,E是AD邊的中點,BE⊥AC,垂足為點F,連接DF,分析下列四個結(jié)論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正確的結(jié)論有()A.4個 B.3個 C.2個 D.1個6.在銀行存款準(zhǔn)備金不變的情況下,銀行的可貸款總量與存款準(zhǔn)備金率成反比例關(guān)系.當(dāng)存款準(zhǔn)備金率為7.5%時,某銀行可貸款總量為400億元,如果存款準(zhǔn)備金率上調(diào)到8%時,該銀行可貸款總量將減少多少億()A.20 B.25 C.30 D.357.當(dāng)ab>0時,y=ax2與y=ax+b的圖象大致是()A. B. C. D.8.如圖,雙曲線y=(k>0)經(jīng)過矩形OABC的邊BC的中點E,交AB于點D,若四邊形ODBC的面積為3,則k的值為()A.1 B.2 C.3 D.69.在0,-2,5,,-0.3中,負(fù)數(shù)的個數(shù)是().A.1 B.2 C.3 D.410.已知一個多邊形的內(nèi)角和是外角和的2倍,則此多邊形的邊數(shù)為()A.6 B.7 C.8 D.9二、填空題(共7小題,每小題3分,滿分21分)11.如圖,把一塊含有45°角的直角三角板的兩個頂點放在直尺的對邊上.如果∠1=20°,那么∠2的度數(shù)是_____.12.如圖,的頂點落在兩條平行線上,點D、E、F分別是三邊中點,平行線間的距離是8,,移動點A,當(dāng)時,EF的長度是______.13.小紅沿坡比為1:的斜坡上走了100米,則她實際上升了_____米.14.如圖,在△ABC中,AB=AC=2,∠BAC=120°,點D、E都在邊BC上,∠DAE=60°.若BD=2CE,則DE的長為________.15.學(xué)校乒乓球社團有4名男隊員和3名女隊員,要從這7名隊員中隨機抽取一男一女組成一隊混合雙打組合,可組成不同的組合共有_____對.16.分解因式:a3-a=17.若點(a,b)在一次函數(shù)y=2x-3的圖象上,則代數(shù)式4a-2b-3的值是__________三、解答題(共7小題,滿分69分)18.(10分)如圖,在△ABC中,∠C=90°,E是BC上一點,ED⊥AB,垂足為D.求證:△ABC∽△EBD.19.(5分)我市某企業(yè)接到一批產(chǎn)品的生產(chǎn)任務(wù),按要求必須在14天內(nèi)完成.已知每件產(chǎn)品的出廠價為60元.工人甲第x天生產(chǎn)的產(chǎn)品數(shù)量為y件,y與x滿足如下關(guān)系:工人甲第幾天生產(chǎn)的產(chǎn)品數(shù)量為70件?設(shè)第x天生產(chǎn)的產(chǎn)品成本為P元/件,P與的函數(shù)圖象如圖.工人甲第x天創(chuàng)造的利潤為W元,求W與x的函數(shù)關(guān)系式,并求出第幾天時利潤最大,最大利潤是多少?20.(8分)如圖,在中,,是角平分線,平分交于點,經(jīng)過兩點的交于點,交于點,恰為的直徑.求證:與相切;當(dāng)時,求的半徑.21.(10分)如圖,點D為△ABC邊上一點,請用尺規(guī)過點D,作△ADE,使點E在AC上,且△ADE與△ABC相似.(保留作圖痕跡,不寫作法,只作出符合條件的一個即可)22.(10分)如圖,在平面直角坐標(biāo)中,點O是坐標(biāo)原點,一次函數(shù)y1=kx+b與反比例函數(shù)y2=的圖象交于A(1,m)、B(n,1)兩點.(1)求直線AB的解析式;(2)根據(jù)圖象寫出當(dāng)y1>y2時,x的取值范圍;(3)若點P在y軸上,求PA+PB的最小值.23.(12分)計算:2sin60°﹣(π﹣2)0+(__)-1+|1﹣|.24.(14分)八年級(1)班學(xué)生在完成課題學(xué)習(xí)“體質(zhì)健康測試中的數(shù)據(jù)分析”后,利用課外活動時間積極參加體育鍛煉,每位同學(xué)從籃球、跳繩、立定跳遠(yuǎn)、長跑、鉛球中選一項進(jìn)行訓(xùn)練,訓(xùn)練后都進(jìn)行了測試.現(xiàn)將項目選擇情況及訓(xùn)練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖.請你根據(jù)上面提供的信息回答下列問題:扇形圖中跳繩部分的扇形圓心角為度,該班共有學(xué)生人,訓(xùn)練后籃球定時定點投籃平均每個人的進(jìn)球數(shù)是.老師決定從選擇鉛球訓(xùn)練的3名男生和1名女生中任選兩名學(xué)生先進(jìn)行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解題分析】由題意,AQ∥NP,MN∥BQ,∴△ACM∽△DCN,△CDN∽△BDP,△BPD∽△BQA,△ACM∽△ABQ,△DCN∽△ABQ,△ACM∽△DBP,所以圖中共有六對相似三角形.故選C.2、C【解題分析】畫樹狀圖得:

∵共有6種等可能的結(jié)果,兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的有2種情況,

∴兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的概率是:.故選C.【題目點撥】運用列表法或樹狀圖法求概率.注意畫樹狀圖法與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件.3、C【解題分析】

左視圖就是從物體的左邊往右邊看.小正方形應(yīng)該在右上角,故B錯誤,看不到的線要用虛線,故A錯誤,大立方體的邊長為3cm,挖去的小立方體邊長為1cm,所以小正方形的邊長應(yīng)該是大正方形,故D錯誤,所以C正確.故此題選C.4、C【解題分析】

解:將60000000000用科學(xué)記數(shù)法表示為:6×1.故選C.【題目點撥】本題考查科學(xué)記數(shù)法—表示較大的數(shù),掌握科學(xué)計數(shù)法的一般形式是解題關(guān)鍵.5、A【解題分析】

①正確.只要證明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;②正確.由AD∥BC,推出△AEF∽△CBF,推出=,由AE=AD=BC,推出=,即CF=2AF;③正確.只要證明DM垂直平分CF,即可證明;④正確.設(shè)AE=a,AB=b,則AD=2a,由△BAE∽△ADC,有=,即b=a,可得tan∠CAD===.【題目詳解】如圖,過D作DM∥BE交AC于N.∵四邊形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∴∠EAC=∠ACB.∵BE⊥AC于點F,∴∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正確;∵AD∥BC,∴△AEF∽△CBF,∴=.∵AE=AD=BC,∴=,∴CF=2AF,故②正確;∵DE∥BM,BE∥DM,∴四邊形BMDE是平行四邊形,∴BM=DE=BC,∴BM=CM,∴CN=NF.∵BE⊥AC于點F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正確;設(shè)AE=a,AB=b,則AD=2a,由△BAE∽△ADC,有=,即b=a,∴tan∠CAD===.故④正確.故選A.【題目點撥】本題考查了相似三角形的判定和性質(zhì),矩形的性質(zhì),圖形面積的計算以及解直角三角形的綜合應(yīng)用,正確的作出輔助線構(gòu)造平行四邊形是解題的關(guān)鍵.解題時注意:相似三角形的對應(yīng)邊成比例.6、B【解題分析】設(shè)可貸款總量為y,存款準(zhǔn)備金率為x,比例常數(shù)為k,則由題意可得:,,∴,∴當(dāng)時,(億),∵400-375=25,∴該行可貸款總量減少了25億.故選B.7、D【解題分析】

∵ab>0,∴a、b同號.當(dāng)a>0,b>0時,拋物線開口向上,頂點在原點,一次函數(shù)過一、二、三象限,沒有圖象符合要求;當(dāng)a<0,b<0時,拋物線開口向下,頂點在原點,一次函數(shù)過二、三、四象限,B圖象符合要求.故選B.8、B【解題分析】

先根據(jù)矩形的特點設(shè)出B、C的坐標(biāo),根據(jù)矩形的面積求出B點橫縱坐標(biāo)的積,由D為AB的中點求出D點的橫縱坐標(biāo),再由待定系數(shù)法即可求出反比例函數(shù)的解析式.【題目詳解】解:如圖:連接OE,設(shè)此反比例函數(shù)的解析式為y=(k>0),C(c,0),則B(c,b),E(c,),設(shè)D(x,y),∵D和E都在反比例函數(shù)圖象上,∴xy=k,即,∵四邊形ODBC的面積為3,∴∴∴bc=4∴∵k>0∴解得k=2,故答案為:B.【題目點撥】本題考查了反比例函數(shù)中比例系數(shù)k的幾何意義,涉及到矩形的性質(zhì)及用待定系數(shù)法求反比例函數(shù)的解析式,難度適中.9、B【解題分析】

根據(jù)負(fù)數(shù)的定義判斷即可【題目詳解】解:根據(jù)負(fù)數(shù)的定義可知,這一組數(shù)中,負(fù)數(shù)有兩個,即-2和-0.1.故選B.10、A【解題分析】試題分析:根據(jù)多邊形的外角和是310°,即可求得多邊形的內(nèi)角的度數(shù)為720°,依據(jù)多邊形的內(nèi)角和公式列方程即可得(n﹣2)180°=720°,解得:n=1.故選A.考點:多邊形的內(nèi)角和定理以及多邊形的外角和定理二、填空題(共7小題,每小題3分,滿分21分)11、25°.【解題分析】∵直尺的對邊平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°-∠3=45°-20°=25°.12、1【解題分析】

過點D作于點H,根等腰三角形的性質(zhì)求得BD的長度,繼而得到,結(jié)合三角形中位線定理求得EF的長度即可.【題目詳解】解:如圖,過點D作于點H,

過點D作于點H,,

又平行線間的距離是8,點D是AB的中點,

,

在直角中,由勾股定理知,.

點D是AB的中點,

又點E、F分別是AC、BC的中點,

是的中位線,

故答案是:1.【題目點撥】考查了三角形中位線定理和平行線的性質(zhì),解題的關(guān)鍵是根據(jù)平行線的性質(zhì)求得DH的長度.13、50【解題分析】

根據(jù)題意設(shè)鉛直距離為x,則水平距離為,根據(jù)勾股定理求出x的值,即可得到結(jié)果.【題目詳解】解:設(shè)鉛直距離為x,則水平距離為,根據(jù)題意得:,解得:(負(fù)值舍去),則她實際上升了50米,故答案為:50【題目點撥】本題考查了解直角三角形的應(yīng)用,此題關(guān)鍵是用同一未知數(shù)表示出下降高度和水平前進(jìn)距離.14、1-1.【解題分析】

將△ABD繞點A逆時針旋轉(zhuǎn)120°得到△ACF,取CF的中點G,連接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=10°,根據(jù)旋轉(zhuǎn)的性質(zhì)可得出∠ECG=60°,結(jié)合CF=BD=2CE可得出△CEG為等邊三角形,進(jìn)而得出△CEF為直角三角形,通過解直角三角形求出BC的長度以及證明全等找出DE=FE,設(shè)EC=x,則BD=CF=2x,DE=FE=6-1x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6-1x=x可求出x以及FE的值,此題得解.【題目詳解】將△ABD繞點A逆時針旋轉(zhuǎn)120°得到△ACF,取CF的中點G,連接EF、EG,如圖所示.∵AB=AC=2,∠BAC=120°,∴∠ACB=∠B=∠ACF=10°,∴∠ECG=60°.∵CF=BD=2CE,∴CG=CE,∴△CEG為等邊三角形,∴EG=CG=FG,∴∠EFG=∠FEG=∠CGE=10°,∴△CEF為直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.設(shè)EC=x,則BD=CF=2x,DE=FE=6-1x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,EF==x,∴6-1x=x,x=1-,∴DE=x=1-1.故答案為:1-1.【題目點撥】本題考查了全等三角形的判定與性質(zhì)、勾股定理以及旋轉(zhuǎn)的性質(zhì),通過勾股定理找出方程是解題的關(guān)鍵.15、1【解題分析】

利用樹狀圖展示所有1種等可能的結(jié)果數(shù).【題目詳解】解:畫樹狀圖為:

共有1種等可能的結(jié)果數(shù).

故答案為1.【題目點撥】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.16、【解題分析】a3-a=a(a2-1)=17、1【解題分析】

根據(jù)題意,將點(a,b)代入函數(shù)解析式即可求得2a-b的值,變形即可求得所求式子的值.【題目詳解】∵點(a,b)在一次函數(shù)y=2x-1的圖象上,∴b=2a-1,∴2a-b=1,∴4a-2b=6,∴4a-2b-1=6-1=1,故答案為:1.【題目點撥】本題考查一次函數(shù)圖象上點的坐標(biāo)特征,解答本題的關(guān)鍵是明確題意,利用一次函數(shù)的性質(zhì)解答.三、解答題(共7小題,滿分69分)18、證明見解析【解題分析】試題分析:先根據(jù)垂直的定義得出∠EDB=90°,故可得出∠EDB=∠C.再由∠B=∠B,根據(jù)有兩個角相等的兩三角形相似即可得出結(jié)論.試題解析:解:∵ED⊥AB,∴∠EDB=90°.∵∠C=90°,∴∠EDB=∠C.∵∠B=∠B,∴∽.點睛:本題考查的是相似三角形的判定,熟知有兩組角對應(yīng)相等的兩個三角形相似是解答此題的關(guān)鍵.19、(1)工人甲第12天生產(chǎn)的產(chǎn)品數(shù)量為70件;(2)第11天時,利潤最大,最大利潤是845元.【解題分析】分析:(1)根據(jù)y=70求得x即可;(2)先根據(jù)函數(shù)圖象求得P關(guān)于x的函數(shù)解析式,再結(jié)合x的范圍分類討論,根據(jù)“總利潤=單件利潤×銷售量”列出函數(shù)解析式,由二次函數(shù)的性質(zhì)求得最值即可.本題解析:解:(1)若7.5x=70,得x=>4,不符合題意;則5x+10=70,解得x=12.答:工人甲第12天生產(chǎn)的產(chǎn)品數(shù)量為70件.(2)由函數(shù)圖象知,當(dāng)0≤x≤4時,P=40,當(dāng)4<x≤14時,設(shè)P=kx+b,將(4,40)、(14,50)代入,得解得∴P=x+36.①當(dāng)0≤x≤4時,W=(60-40)·7.5x=150x,∵W隨x的增大而增大,∴當(dāng)x=4時,W最大=600;②當(dāng)4<x≤14時,W=(60-x-36)(5x+10)=-5x2+110x+240=-5(x-11)2+845,∴當(dāng)x=11時,W最大=845.∵845>600,∴當(dāng)x=11時,W取得最大值845元.答:第11天時,利潤最大,最大利潤是845元.點睛:本題考查了一次函數(shù)的應(yīng)用、二次函數(shù)的應(yīng)用,解題的關(guān)鍵是理解題意,記住利潤=出廠價-成本,學(xué)會利用函數(shù)的性質(zhì)解決最值問題.20、(1)證明見解析;(2).【解題分析】

(1)連接OM,證明OM∥BE,再結(jié)合等腰三角形的性質(zhì)說明AE⊥BE,進(jìn)而證明OM⊥AE;(2)結(jié)合已知求出AB,再證明△AOM∽△ABE,利用相似三角形的性質(zhì)計算.【題目詳解】(1)連接OM,則OM=OB,∴∠1=∠2,∵BM平分∠ABC,∴∠1=∠3,∴∠2=∠3,∴OM∥BC,∴∠AMO=∠AEB,在△ABC中,AB=AC,AE是角平分線,∴AE⊥BC,∴∠AEB=90°,∴∠AMO=90°,∴OM⊥AE,∵點M在圓O上,∴AE與⊙O相切;(2)在△ABC中,AB=AC,AE是角平分線,∴BE=BC,∠ABC=∠C,∵BC=4,cosC=∴BE=2,cos∠ABC=,在△ABE中,∠AEB=90°,∴AB==6,設(shè)⊙O的半徑為r,則AO=6-r,∵OM∥BC,∴△AOM∽△ABE,∴∴,∴,解得,∴的半徑為.【題目點撥】本題考查了切線的判定;等腰三角形的性質(zhì);相似三角形的判定與性質(zhì);解直角三角形等知識,綜合性較強,正確添加輔助線,熟練運用相關(guān)知識是解題的關(guān)鍵.21、見解析【解題分析】

以DA為邊、點D為頂點在△ABC內(nèi)部作一個角等于∠B,角的另一邊與AC的交點即為所求作的點.【題目詳解】解:如圖,點E即為所求作的點.【題目點撥】本題主要考查作圖-相似變換,根據(jù)相似三角形的判定明確過點D作DE∥BC并熟練掌握做一個角等于已知角的作法式解題的關(guān)鍵.22、(1)y=﹣x+4;(2)1<x<1;(1)2.【解題分析】

(1)依據(jù)反比例函數(shù)y2=(x>0)的圖象交于A(1,m)、B(n,1)兩點,即可得到A(1,1)、B(1,1),代入一次函數(shù)y1=kx+b,可得直線AB的解析式;(2)當(dāng)1<x<1時,正比例函數(shù)圖象在反比例函數(shù)圖象的上方,即可得到當(dāng)y1>y2時,x的取值范圍是1<x<1;(1)作點A關(guān)于y軸的對稱點C,連接BC交y軸于點P,則PA+PB的最小值等于BC的長,利用勾股定理即可得到BC的長.【題目詳解】(1)A(1,m)、B(n,1)兩點坐標(biāo)分別代入反比例函數(shù)y2=(x>0),可得m=1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論