2024屆萍鄉(xiāng)市重點中學(xué)高三數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第1頁
2024屆萍鄉(xiāng)市重點中學(xué)高三數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第2頁
2024屆萍鄉(xiāng)市重點中學(xué)高三數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第3頁
2024屆萍鄉(xiāng)市重點中學(xué)高三數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第4頁
2024屆萍鄉(xiāng)市重點中學(xué)高三數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆萍鄉(xiāng)市重點中學(xué)高三數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合則()A. B. C. D.2.復(fù)數(shù)的共軛復(fù)數(shù)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如圖,在平行四邊形中,為對角線的交點,點為平行四邊形外一點,且,,則()A. B.C. D.4.是虛數(shù)單位,則()A.1 B.2 C. D.5.已知集合,,,則集合()A. B. C. D.6.是恒成立的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.已知圓:,圓:,點、分別是圓、圓上的動點,為軸上的動點,則的最大值是()A. B.9 C.7 D.8.已知集合,集合,則A. B.或C. D.9.函數(shù)圖像可能是()A. B. C. D.10.2019年10月1日,為了慶祝中華人民共和國成立70周年,小明、小紅、小金三人以國慶為主題各自獨立完成一幅十字繡贈送給當(dāng)?shù)氐拇逦瘯@三幅十字繡分別命名為“鴻福齊天”、“國富民強”、“興國之路”,為了弄清“國富民強”這一作品是誰制作的,村支書對三人進行了問話,得到回復(fù)如下:小明說:“鴻福齊天”是我制作的;小紅說:“國富民強”不是小明制作的,就是我制作的;小金說:“興國之路”不是我制作的,若三人的說法有且僅有一人是正確的,則“鴻福齊天”的制作者是()A.小明 B.小紅 C.小金 D.小金或小明11.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的值為()A.0 B.1 C. D.12.已知等差數(shù)列中,則()A.10 B.16 C.20 D.24二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)變量,滿足約束條件,則目標(biāo)函數(shù)的最小值為______.14.某市公租房源位于、、三個小區(qū),每位申請人只能申請其中一個小區(qū)的房子,申請其中任意一個小區(qū)的房子是等可能的,則該市的任意位申請人中,恰好有人申請小區(qū)房源的概率是______.(用數(shù)字作答)15.設(shè),分別是定義在上的奇函數(shù)和偶函數(shù),且,則_________16.直線是圓:與圓:的公切線,并且分別與軸正半軸,軸正半軸相交于,兩點,則的面積為_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天數(shù)216362574以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元),當(dāng)六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.18.(12分)設(shè)函數(shù).(1)求的值;(2)若,求函數(shù)的單調(diào)遞減區(qū)間.19.(12分)管道清潔棒是通過在管道內(nèi)釋放清潔劑來清潔管道內(nèi)壁的工具,現(xiàn)欲用清潔棒清潔一個如圖1所示的圓管直角彎頭的內(nèi)壁,其縱截面如圖2所示,一根長度為的清潔棒在彎頭內(nèi)恰好處于位置(圖中給出的數(shù)據(jù)是圓管內(nèi)壁直徑大小,).(1)請用角表示清潔棒的長;(2)若想讓清潔棒通過該彎頭,清潔下一段圓管,求能通過該彎頭的清潔棒的最大長度.20.(12分)在四棱錐中,底面是平行四邊形,為其中心,為銳角三角形,且平面底面,為的中點,.(1)求證:平面;(2)求證:.21.(12分)如圖,在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,AB=AA1,M,N分別是AC,B1C1的中點.求證:(1)MN∥平面ABB1A1;(2)AN⊥A1B.22.(10分)某公園有一塊邊長為3百米的正三角形空地,擬將它分割成面積相等的三個區(qū)域,用來種植三種花卉.方案是:先建造一條直道將分成面積之比為的兩部分(點D,E分別在邊,上);再取的中點M,建造直道(如圖).設(shè),,(單位:百米).(1)分別求,關(guān)于x的函數(shù)關(guān)系式;(2)試確定點D的位置,使兩條直道的長度之和最小,并求出最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

解對數(shù)不等式可得集合A,由交集運算即可求解.【詳解】集合解得由集合交集運算可得,故選:B.【點睛】本題考查了集合交集的簡單運算,對數(shù)不等式解法,屬于基礎(chǔ)題.2、A【解析】

試題分析:由題意可得:.共軛復(fù)數(shù)為,故選A.考點:1.復(fù)數(shù)的除法運算;2.以及復(fù)平面上的點與復(fù)數(shù)的關(guān)系3、D【解析】

連接,根據(jù)題目,證明出四邊形為平行四邊形,然后,利用向量的線性運算即可求出答案【詳解】連接,由,知,四邊形為平行四邊形,可得四邊形為平行四邊形,所以.【點睛】本題考查向量的線性運算問題,屬于基礎(chǔ)題4、C【解析】

由復(fù)數(shù)除法的運算法則求出,再由模長公式,即可求解.【詳解】由.故選:C.【點睛】本題考查復(fù)數(shù)的除法和模,屬于基礎(chǔ)題.5、D【解析】

根據(jù)集合的混合運算,即可容易求得結(jié)果.【詳解】,故可得.故選:D.【點睛】本題考查集合的混合運算,屬基礎(chǔ)題.6、A【解析】

設(shè)成立;反之,滿足,但,故選A.7、B【解析】試題分析:圓的圓心,半徑為,圓的圓心,半徑是.要使最大,需最大,且最小,最大值為的最小值為,故最大值是;關(guān)于軸的對稱點,,故的最大值為,故選B.考點:圓與圓的位置關(guān)系及其判定.【思路點睛】先根據(jù)兩圓的方程求出圓心和半徑,要使最大,需最大,且最小,最大值為的最小值為,故最大值是,再利用對稱性,求出所求式子的最大值.8、C【解析】

由可得,解得或,所以或,又,所以,故選C.9、D【解析】

先判斷函數(shù)的奇偶性可排除選項A,C,當(dāng)時,可分析函數(shù)值為正,即可判斷選項.【詳解】,,即函數(shù)為偶函數(shù),故排除選項A,C,當(dāng)正數(shù)越來越小,趨近于0時,,所以函數(shù),故排除選項B,故選:D【點睛】本題主要考查了函數(shù)的奇偶性,識別函數(shù)的圖象,屬于中檔題.10、B【解析】

將三個人制作的所有情況列舉出來,再一一論證.【詳解】依題意,三個人制作的所有情況如下所示:123456鴻福齊天小明小明小紅小紅小金小金國富民強小紅小金小金小明小紅小明興國之路小金小紅小明小金小明小紅若小明的說法正確,則均不滿足;若小紅的說法正確,則4滿足;若小金的說法正確,則3滿足.故“鴻福齊天”的制作者是小紅,故選:B.【點睛】本題考查推理與證明,還考查推理論證能力以及分類討論思想,屬于基礎(chǔ)題.11、A【解析】

根據(jù)輸入的值大小關(guān)系,代入程序框圖即可求解.【詳解】輸入,,因為,所以由程序框圖知,輸出的值為.故選:A【點睛】本題考查了對數(shù)式大小比較,條件程序框圖的簡單應(yīng)用,屬于基礎(chǔ)題.12、C【解析】

根據(jù)等差數(shù)列性質(zhì)得到,再計算得到答案.【詳解】已知等差數(shù)列中,故答案選C【點睛】本題考查了等差數(shù)列的性質(zhì),是數(shù)列的??碱}型.二、填空題:本題共4小題,每小題5分,共20分。13、-8【解析】

通過約束條件,畫出可行域,將問題轉(zhuǎn)化為直線在軸截距最大的問題,通過圖像解決.【詳解】由題意可得可行域如下圖所示:令,則即為在軸截距的最大值由圖可知:當(dāng)過時,在軸截距最大本題正確結(jié)果:【點睛】本題考查線性規(guī)劃中的型最值的求解問題,關(guān)鍵在于將所求最值轉(zhuǎn)化為在軸截距的問題.14、【解析】

基本事件總數(shù),恰好有2人申請小區(qū)房源包含的基本事件個數(shù),由此能求出該市的任意5位申請人中,恰好有2人申請小區(qū)房源的概率.【詳解】解:某市公租房源位于、、三個小區(qū),每位申請人只能申請其中一個小區(qū)的房子,申請其中任意一個小區(qū)的房子是等可能的,該市的任意5位申請人中,基本事件總數(shù),該市的任意5位申請人中,恰好有2人申請小區(qū)房源包含的基本事件個數(shù):,該市的任意5位申請人中,恰好有2人申請小區(qū)房源的概率是.故答案為:.【點睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識,考查運算求解能力,屬于中檔題.15、1【解析】

令,結(jié)合函數(shù)的奇偶性,求得,即可求解的值,得到答案.【詳解】由題意,函數(shù)分別是上的奇函數(shù)和偶函數(shù),且,令,可得,所以.故答案為:1.【點睛】本題主要考查了函數(shù)奇偶性的應(yīng)用,其中解答中熟記函數(shù)的奇偶性,合理賦值求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.16、【解析】

根據(jù)題意畫出圖形,設(shè),利用三角形相似求得的值,代入三角形的面積公式,即可求解.【詳解】如圖所示,設(shè),由與相似,可得,解得,再由與相似,可得,解得,由三角形的面積公式,可得的面積為.故答案為:.【點睛】本題主要考查了直線與圓的位置關(guān)系的應(yīng)用,以及三角形相似的應(yīng)用,著重考查了數(shù)形結(jié)合思想,以及推理與運算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2).【解析】

(1)由前三年六月份各天的最高氣溫數(shù)據(jù),求出最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù),由此能求出六月份這種酸奶一天的需求量不超過300瓶的概率.(2)當(dāng)溫度大于等于25℃時,需求量為500,求出Y=900元;當(dāng)溫度在[20,25)℃時,需求量為300,求出Y=300元;當(dāng)溫度低于20℃時,需求量為200,求出Y=﹣100元,從而當(dāng)溫度大于等于20時,Y>0,由此能估計估計Y大于零的概率.【詳解】解:(1)由前三年六月份各天的最高氣溫數(shù)據(jù),得到最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù)為2+16+36=54,根據(jù)往年銷售經(jīng)驗,每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶,如果最高氣溫位于區(qū)間[20,25),需求量為300瓶,如果最高氣溫低于20,需求量為200瓶,∴六月份這種酸奶一天的需求量不超過300瓶的概率p.(2)當(dāng)溫度大于等于25℃時,需求量為500,Y=450×2=900元,當(dāng)溫度在[20,25)℃時,需求量為300,Y=300×2﹣(450﹣300)×2=300元,當(dāng)溫度低于20℃時,需求量為200,Y=400﹣(450﹣200)×2=﹣100元,當(dāng)溫度大于等于20時,Y>0,由前三年六月份各天的最高氣溫數(shù)據(jù),得當(dāng)溫度大于等于20℃的天數(shù)有:90﹣(2+16)=72,∴估計Y大于零的概率P.【點睛】本題考查概率的求法,考查利潤的所有可能取值的求法,考查函數(shù)、古典概型等基礎(chǔ)知識,考查推理論證能力、運算求解能力、空間想象能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,是中檔題.18、(1)(2)的遞減區(qū)間為和【解析】

(1)化簡函數(shù),代入,計算即可;(2)先利用正弦函數(shù)的圖象與性質(zhì)求出函數(shù)的單調(diào)遞減區(qū)間,再結(jié)合即可求出.【詳解】(1),從而.(2)令.解得.即函數(shù)的所有減區(qū)間為,考慮到,取,可得,,故的遞減區(qū)間為和.【點睛】本題主要考查了三角函數(shù)的恒等變形,正弦函數(shù)的圖象與性質(zhì),屬于中檔題.19、(1);(2).【解析】

(1)過作的垂線,垂足為,易得,進一步可得;(2)利用導(dǎo)數(shù)求得最大值即可.【詳解】(1)如圖,過作的垂線,垂足為,在直角中,,,所以,同理,.(2)設(shè),則,令,則,即.設(shè),且,則當(dāng)時,,所以單調(diào)遞減;當(dāng)時,,所以單調(diào)遞增,所以當(dāng)時,取得極小值,所以.因為,所以,又,所以,又,所以,所以,所以,所以能通過此鋼管的鐵棒最大長度為.【點睛】本題考查導(dǎo)數(shù)在實際問題中的應(yīng)用,考查學(xué)生的數(shù)學(xué)運算求解能力,是一道中檔題.20、(1)證明見解析(2)證明見解析【解析】

(1)通過證明,即可證明線面平行;(2)通過證明平面,即可證明線線垂直.【詳解】(1)連,因為為平行四邊形,為其中心,所以,為中點,又因為為中點,所以,又平面,平面所以,平面;(2)作于因為平面平面,平面平面,平面,所以,平面又平面,所以又,,平面,平面所以,平面,又平面,所以,.【點睛】此題考查證明線面平行和線面垂直,通過線面垂直得線線垂直,關(guān)鍵在于熟練掌握相關(guān)判定定理,找出平行關(guān)系和垂直關(guān)系證明.21、(1)詳見解析;(2)詳見解析.【解析】

(1)利用平行四邊形的方法,證明平面.(2)通過證明平面,由此證得.【詳解】(1)設(shè)是中點,連接,由于是中點,所以且,而且,所以與平行且相等,所以四邊形是平行四邊形,所以,由于平面,平面,所以平面.(2)連接,由于直三棱柱中,而,,所以平面,所以,由于,所以.由于四邊形是矩形且,所以四邊形是正方形,所以,由于,所以平面,所以.【點睛】本小題主要考查線面平行的證明,考查線面垂直的證明,考查空間想象能力和邏輯推理能力,屬于中檔題.22、(1),.,.(2)當(dāng)百米時,兩條直道的長度之和取得最小值百米.【解析】

(1)由,可解得.方法一:再在中,利用余弦定理,可得關(guān)于x的函數(shù)關(guān)系式;在和中,利用余弦定理,可得關(guān)于x的函數(shù)關(guān)系式.方法二:在中,可得,則有,化簡整理即得;同理,化簡整理即得.(2)由(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論