2024屆濮陽市重點(diǎn)中學(xué)高三下學(xué)期數(shù)學(xué)試題大練習(xí)四_第1頁
2024屆濮陽市重點(diǎn)中學(xué)高三下學(xué)期數(shù)學(xué)試題大練習(xí)四_第2頁
2024屆濮陽市重點(diǎn)中學(xué)高三下學(xué)期數(shù)學(xué)試題大練習(xí)四_第3頁
2024屆濮陽市重點(diǎn)中學(xué)高三下學(xué)期數(shù)學(xué)試題大練習(xí)四_第4頁
2024屆濮陽市重點(diǎn)中學(xué)高三下學(xué)期數(shù)學(xué)試題大練習(xí)四_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆濮陽市重點(diǎn)中學(xué)高三下學(xué)期數(shù)學(xué)試題大練習(xí)四注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.復(fù)數(shù)().A. B. C. D.2.點(diǎn)是單位圓上不同的三點(diǎn),線段與線段交于圓內(nèi)一點(diǎn)M,若,則的最小值為()A. B. C. D.3.直線與拋物線C:交于A,B兩點(diǎn),直線,且l與C相切,切點(diǎn)為P,記的面積為S,則的最小值為A. B. C. D.4.記的最大值和最小值分別為和.若平面向量、、,滿足,則()A. B.C. D.5.已知P是雙曲線漸近線上一點(diǎn),,是雙曲線的左、右焦點(diǎn),,記,PO,的斜率為,k,,若,-2k,成等差數(shù)列,則此雙曲線的離心率為()A. B. C. D.6.已知函數(shù),其中表示不超過的最大正整數(shù),則下列結(jié)論正確的是()A.的值域是 B.是奇函數(shù)C.是周期函數(shù) D.是增函數(shù)7.若復(fù)數(shù)(是虛數(shù)單位),則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.要得到函數(shù)的圖象,只需將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)()A.伸長到原來的2倍(縱坐標(biāo)不變),再將得到的圖象向右平移個(gè)單位長度B.伸長到原來的2倍(縱坐標(biāo)不變),再將得到的圖像向左平移個(gè)單位長度C.縮短到原來的倍(縱坐標(biāo)不變),再將得到的圖象向左平移個(gè)單位長度D.縮短到原來的倍(縱坐標(biāo)不變),再將得到的圖象向右平移個(gè)單位長度9.設(shè)平面與平面相交于直線,直線在平面內(nèi),直線在平面內(nèi),且則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分不必要條件10.已知某幾何體的三視圖如右圖所示,則該幾何體的體積為()A.3 B. C. D.11.祖暅原理:“冪勢既同,則積不容異”.意思是說:兩個(gè)同高的幾何體,如在等高處的截面積恒相等,則體積相等.設(shè)、為兩個(gè)同高的幾何體,、的體積不相等,、在等高處的截面積不恒相等.根據(jù)祖暅原理可知,是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.設(shè)是等差數(shù)列,且公差不為零,其前項(xiàng)和為.則“,”是“為遞增數(shù)列”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在△ABC中,E為邊AC上一點(diǎn),且,P為BE上一點(diǎn),且滿足,則的最小值為______.14.已知,則=___________,_____________________________15.已知向量,滿足,,且已知向量,的夾角為,,則的最小值是__.16.已知函數(shù)是定義在上的奇函數(shù),且周期為,當(dāng)時(shí),,則的值為___________________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)選修4-4:坐標(biāo)系與參數(shù)方程已知曲線的參數(shù)方程是(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.(1)寫出的極坐標(biāo)方程和的直角坐標(biāo)方程;(2)已知點(diǎn)、的極坐標(biāo)分別為和,直線與曲線相交于,兩點(diǎn),射線與曲線相交于點(diǎn),射線與曲線相交于點(diǎn),求的值.18.(12分)設(shè)點(diǎn),分別是橢圓的左、右焦點(diǎn),為橢圓上任意一點(diǎn),且的最小值為1.(1)求橢圓的方程;(2)如圖,動直線與橢圓有且僅有一個(gè)公共點(diǎn),點(diǎn),是直線上的兩點(diǎn),且,,求四邊形面積的最大值.19.(12分)已知兩數(shù).(1)當(dāng)時(shí),求函數(shù)的極值點(diǎn);(2)當(dāng)時(shí),若恒成立,求的最大值.20.(12分)已知集合,集合.(1)求集合;(2)若,求實(shí)數(shù)的取值范圍.21.(12分)在中,角、、所對的邊分別為、、,且.(1)求角的大??;(2)若,的面積為,求及的值.22.(10分)如圖,已知橢圓C:x24+y2=1,F(xiàn)為其右焦點(diǎn),直線l:y=kx+m(km<0)與橢圓交于P(x1(I)試用x1表示|PF|(II)證明:原點(diǎn)O到直線l的距離為定值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解題分析】試題分析:,故選A.【考點(diǎn)】復(fù)數(shù)運(yùn)算【名師點(diǎn)睛】復(fù)數(shù)代數(shù)形式的四則運(yùn)算的法則是進(jìn)行復(fù)數(shù)運(yùn)算的理論依據(jù),加減運(yùn)算類似于多項(xiàng)式的合并同類項(xiàng),乘法法則類似于多項(xiàng)式的乘法法則,除法運(yùn)算則先將除式寫成分式的形式,再將分母實(shí)數(shù)化.2、D【解題分析】

由題意得,再利用基本不等式即可求解.【題目詳解】將平方得,(當(dāng)且僅當(dāng)時(shí)等號成立),,的最小值為,故選:D.【題目點(diǎn)撥】本題主要考查平面向量數(shù)量積的應(yīng)用,考查基本不等式的應(yīng)用,屬于中檔題.3、D【解題分析】

設(shè)出坐標(biāo),聯(lián)立直線方程與拋物線方程,利用弦長公式求得,再由點(diǎn)到直線的距離公式求得到的距離,得到的面積為,作差后利用導(dǎo)數(shù)求最值.【題目詳解】設(shè),,聯(lián)立,得則,則由,得設(shè),則,則點(diǎn)到直線的距離從而.令當(dāng)時(shí),;當(dāng)時(shí),故,即的最小值為本題正確選項(xiàng):【題目點(diǎn)撥】本題考查直線與拋物線位置關(guān)系的應(yīng)用,考查利用導(dǎo)數(shù)求最值的問題.解決圓錐曲線中的面積類最值問題,通常采用構(gòu)造函數(shù)關(guān)系的方式,然后結(jié)合導(dǎo)數(shù)或者利用函數(shù)值域的方法來求解最值.4、A【解題分析】

設(shè)為、的夾角,根據(jù)題意求得,然后建立平面直角坐標(biāo)系,設(shè),,,根據(jù)平面向量數(shù)量積的坐標(biāo)運(yùn)算得出點(diǎn)的軌跡方程,將和轉(zhuǎn)化為圓上的點(diǎn)到定點(diǎn)距離,利用數(shù)形結(jié)合思想可得出結(jié)果.【題目詳解】由已知可得,則,,,建立平面直角坐標(biāo)系,設(shè),,,由,可得,即,化簡得點(diǎn)的軌跡方程為,則,則轉(zhuǎn)化為圓上的點(diǎn)與點(diǎn)的距離,,,,轉(zhuǎn)化為圓上的點(diǎn)與點(diǎn)的距離,,.故選:A.【題目點(diǎn)撥】本題考查和向量與差向量模最值的求解,將向量坐標(biāo)化,將問題轉(zhuǎn)化為圓上的點(diǎn)到定點(diǎn)距離的最值問題是解答的關(guān)鍵,考查化歸與轉(zhuǎn)化思想與數(shù)形結(jié)合思想的應(yīng)用,屬于中等題.5、B【解題分析】

求得雙曲線的一條漸近線方程,設(shè)出的坐標(biāo),由題意求得,運(yùn)用直線的斜率公式可得,,,再由等差數(shù)列中項(xiàng)性質(zhì)和離心率公式,計(jì)算可得所求值.【題目詳解】設(shè)雙曲線的一條漸近線方程為,且,由,可得以為圓心,為半徑的圓與漸近線交于,可得,可取,則,設(shè),,則,,,由,,成等差數(shù)列,可得,化為,即,可得,故選:.【題目點(diǎn)撥】本題考查雙曲線的方程和性質(zhì),主要是漸近線方程和離心率,考查方程思想和運(yùn)算能力,意在考查學(xué)生對這些知識的理解掌握水平.6、C【解題分析】

根據(jù)表示不超過的最大正整數(shù),可構(gòu)建函數(shù)圖象,即可分別判斷值域、奇偶性、周期性、單調(diào)性,進(jìn)而下結(jié)論.【題目詳解】由表示不超過的最大正整數(shù),其函數(shù)圖象為選項(xiàng)A,函數(shù),故錯(cuò)誤;選項(xiàng)B,函數(shù)為非奇非偶函數(shù),故錯(cuò)誤;選項(xiàng)C,函數(shù)是以1為周期的周期函數(shù),故正確;選項(xiàng)D,函數(shù)在區(qū)間上是增函數(shù),但在整個(gè)定義域范圍上不具備單調(diào)性,故錯(cuò)誤.故選:C【題目點(diǎn)撥】本題考查對題干的理解,屬于函數(shù)新定義問題,可作出圖象分析性質(zhì),屬于較難題.7、A【解題分析】

將整理成的形式,得到復(fù)數(shù)所對應(yīng)的的點(diǎn),從而可選出所在象限.【題目詳解】解:,所以所對應(yīng)的點(diǎn)為在第一象限.故選:A.【題目點(diǎn)撥】本題考查了復(fù)數(shù)的乘法運(yùn)算,考查了復(fù)數(shù)對應(yīng)的坐標(biāo).易錯(cuò)點(diǎn)是誤把當(dāng)成進(jìn)行計(jì)算.8、B【解題分析】

分析:根據(jù)三角函數(shù)的圖象關(guān)系進(jìn)行判斷即可.詳解:將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),

得到再將得到的圖象向左平移個(gè)單位長度得到故選B.點(diǎn)睛:本題主要考查三角函數(shù)的圖象變換,結(jié)合和的關(guān)系是解決本題的關(guān)鍵.9、A【解題分析】

試題分析:α⊥β,b⊥m又直線a在平面α內(nèi),所以a⊥b,但直線不一定相交,所以“α⊥β”是“a⊥b”的充分不必要條件,故選A.考點(diǎn):充分條件、必要條件.10、B【解題分析】由三視圖知:幾何體是直三棱柱消去一個(gè)三棱錐,如圖:

直三棱柱的體積為,消去的三棱錐的體積為,

∴幾何體的體積,故選B.點(diǎn)睛:本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及相關(guān)幾何量的數(shù)據(jù)是解答此類問題的關(guān)鍵;幾何體是直三棱柱消去一個(gè)三棱錐,結(jié)合直觀圖分別求出直三棱柱的體積和消去的三棱錐的體積,相減可得幾何體的體積.11、A【解題分析】

由題意分別判斷命題的充分性與必要性,可得答案.【題目詳解】解:由題意,若、的體積不相等,則、在等高處的截面積不恒相等,充分性成立;反之,、在等高處的截面積不恒相等,但、的體積可能相等,例如是一個(gè)正放的正四面體,一個(gè)倒放的正四面體,必要性不成立,所以是的充分不必要條件,故選:A.【題目點(diǎn)撥】本題主要考查充分條件、必要條件的判定,意在考查學(xué)生的邏輯推理能力.12、A【解題分析】

根據(jù)等差數(shù)列的前項(xiàng)和公式以及充分條件和必要條件的定義進(jìn)行判斷即可.【題目詳解】是等差數(shù)列,且公差不為零,其前項(xiàng)和為,充分性:,則對任意的恒成立,則,,若,則數(shù)列為單調(diào)遞減數(shù)列,則必存在,使得當(dāng)時(shí),,則,不合乎題意;若,由且數(shù)列為單調(diào)遞增數(shù)列,則對任意的,,合乎題意.所以,“,”“為遞增數(shù)列”;必要性:設(shè),當(dāng)時(shí),,此時(shí),,但數(shù)列是遞增數(shù)列.所以,“,”“為遞增數(shù)列”.因此,“,”是“為遞增數(shù)列”的充分而不必要條件.故選:A.【題目點(diǎn)撥】本題主要考查充分條件和必要條件的判斷,結(jié)合等差數(shù)列的前項(xiàng)和公式是解決本題的關(guān)鍵,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】試題分析:根據(jù)題意有,因?yàn)槿c(diǎn)共線,所以有,從而有,所以的最小值是.考點(diǎn):向量的運(yùn)算,基本不等式.【方法點(diǎn)睛】該題考查的是有關(guān)應(yīng)用基本不等式求最值的問題,屬于中檔題目,在解題的過程中,關(guān)鍵步驟在于對題中條件的轉(zhuǎn)化,根據(jù)三點(diǎn)共線,結(jié)合向量的性質(zhì)可知,從而等價(jià)于已知兩個(gè)正數(shù)的整式形式和為定值,求分式形式和的最值的問題,兩式乘積,最后應(yīng)用基本不等式求得結(jié)果,最后再加,得出最后的答案.14、?196?3【解題分析】

由二項(xiàng)式定理及二項(xiàng)式展開式通項(xiàng)得:,令x=1,則1+a0+a1+…+a7=(1+1)×(1-2)7=-2,所以a0+a1+…+a7=-3,得解.【題目詳解】由二項(xiàng)式(1?2x)7展開式的通項(xiàng)得,則,令x=1,則,所以a0+a1+…+a7=?3,故答案為:?196,?3.【題目點(diǎn)撥】本題考查二項(xiàng)式定理及其通項(xiàng),屬于中等題.15、【解題分析】

求的最小值可以轉(zhuǎn)化為求以AB為直徑的圓到點(diǎn)O的最小距離,由此即可得到本題答案.【題目詳解】如圖所示,設(shè),由題,得,又,所以,則點(diǎn)C在以AB為直徑的圓上,取AB的中點(diǎn)為M,則,設(shè)以AB為直徑的圓與線段OM的交點(diǎn)為E,則的最小值是,因?yàn)?,又,所以的最小值?故答案為:【題目點(diǎn)撥】本題主要考查向量的綜合應(yīng)用問題,涉及到圓的相關(guān)知識與余弦定理,考查學(xué)生的分析問題和解決問題的能力,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想.16、【解題分析】

由題意可得:,周期為,可得,可求出,最后再求的值即可.【題目詳解】解:函數(shù)是定義在上的奇函數(shù),.由周期為,可知,,..故答案為:.【題目點(diǎn)撥】本題主要考查函數(shù)的基本性質(zhì),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)線的普通方程為,曲線的直角坐標(biāo)方程為;(2).【解題分析】試題分析:(1)(1)利用cos2θ+sin2θ=1,即可曲線C1的參數(shù)方程化為普通方程,進(jìn)而利用即可化為極坐標(biāo)方程,同理可得曲線C2的直角坐標(biāo)方程;

(2)由過的圓心,得得,設(shè),,代入中即可得解.試題解析:(1)曲線的普通方程為,化成極坐標(biāo)方程為曲線的直角坐標(biāo)方程為(2)在直角坐標(biāo)系下,,,恰好過的圓心,

∴由得,是橢圓上的兩點(diǎn),在極坐標(biāo)下,設(shè),分別代入中,有和∴,則,即18、(1);(2)2.【解題分析】

(1)利用的最小值為1,可得,,即可求橢圓的方程;(2)將直線的方程代入橢圓的方程中,得到關(guān)于的一元二次方程,由直線與橢圓僅有一個(gè)公共點(diǎn)知,即可得到,的關(guān)系式,利用點(diǎn)到直線的距離公式即可得到,.當(dāng)時(shí),設(shè)直線的傾斜角為,則,即可得到四邊形面積的表達(dá)式,利用基本不等式的性質(zhì),結(jié)合當(dāng)時(shí),四邊形是矩形,即可得出的最大值.【題目詳解】(1)設(shè),則,,,,由題意得,,橢圓的方程為;

(2)將直線的方程代入橢圓的方程中,得.

由直線與橢圓僅有一個(gè)公共點(diǎn)知,,化簡得:.

設(shè),,當(dāng)時(shí),設(shè)直線的傾斜角為,則,,,,∴當(dāng)時(shí),,,.當(dāng)時(shí),四邊形是矩形,.

所以四邊形面積的最大值為2.【題目點(diǎn)撥】本題主要考查橢圓的方程與性質(zhì)、直線方程、直線與橢圓的位置關(guān)系、向量知識、二次函數(shù)的單調(diào)性、基本不等式的性質(zhì)等基礎(chǔ)知識,考查運(yùn)算能力、推理論證以及分析問題、解決問題的能力,考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化思想.19、(1)唯一的極大值點(diǎn)1,無極小值點(diǎn).(2)1【解題分析】

(1)求出導(dǎo)函數(shù),求得的解,確定此解兩側(cè)導(dǎo)數(shù)值的正負(fù),確定極值點(diǎn);(2)問題可變形為恒成立,由導(dǎo)數(shù)求出函數(shù)的最小值,時(shí),無最小值,因此只有,從而得出的不等關(guān)系,得出所求最大值.【題目詳解】解:(1)定義域?yàn)?,?dāng)時(shí),,令得,當(dāng)所以在上單調(diào)遞增,在上單調(diào)遞減,所以有唯一的極大值點(diǎn),無極小值點(diǎn).(2)當(dāng)時(shí),.若恒成立,則恒成立,所以恒成立,令,則,由題意,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論