版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
云南省賓川縣第四高級中學(xué)2024屆高三第二學(xué)期期末練習(xí)數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),均為非零的平面向量,則“存在負(fù)數(shù),使得”是“”的A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件2.如圖,網(wǎng)格紙上小正方形的邊長為,粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B. C. D.3.已知函數(shù)的圖象在點(diǎn)處的切線方程是,則()A.2 B.3 C.-2 D.-34.在一個(gè)數(shù)列中,如果,都有(為常數(shù)),那么這個(gè)數(shù)列叫做等積數(shù)列,叫做這個(gè)數(shù)列的公積.已知數(shù)列是等積數(shù)列,且,,公積為,則()A. B. C. D.5.已知實(shí)數(shù)滿足,則的最小值為()A. B. C. D.6.已知函數(shù).下列命題:①函數(shù)的圖象關(guān)于原點(diǎn)對稱;②函數(shù)是周期函數(shù);③當(dāng)時(shí),函數(shù)取最大值;④函數(shù)的圖象與函數(shù)的圖象沒有公共點(diǎn),其中正確命題的序號是()A.①④ B.②③ C.①③④ D.①②④7.德國數(shù)學(xué)家萊布尼茲(1646年-1716年)于1674年得到了第一個(gè)關(guān)于π的級數(shù)展開式,該公式于明朝初年傳入我國.在我國科技水平業(yè)已落后的情況下,我國數(shù)學(xué)家?天文學(xué)家明安圖(1692年-1765年)為提高我國的數(shù)學(xué)研究水平,從乾隆初年(1736年)開始,歷時(shí)近30年,證明了包括這個(gè)公式在內(nèi)的三個(gè)公式,同時(shí)求得了展開三角函數(shù)和反三角函數(shù)的6個(gè)新級數(shù)公式,著有《割圓密率捷法》一書,為我國用級數(shù)計(jì)算π開創(chuàng)了先河.如圖所示的程序框圖可以用萊布尼茲“關(guān)于π的級數(shù)展開式”計(jì)算π的近似值(其中P表示π的近似值),若輸入,則輸出的結(jié)果是()A. B.C. D.8.如圖,圓的半徑為,,是圓上的定點(diǎn),,是圓上的動(dòng)點(diǎn),點(diǎn)關(guān)于直線的對稱點(diǎn)為,角的始邊為射線,終邊為射線,將表示為的函數(shù),則在上的圖像大致為()A. B. C. D.9.復(fù)數(shù)的虛部是()A. B. C. D.10.已知,,是平面內(nèi)三個(gè)單位向量,若,則的最小值()A. B. C. D.511.已知數(shù)列中,,若對于任意的,不等式恒成立,則實(shí)數(shù)的取值范圍為()A. B.C. D.12.函數(shù)的單調(diào)遞增區(qū)間是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在三棱錐P-ABC中,,,,三個(gè)側(cè)面與底面所成的角均為,三棱錐的內(nèi)切球的表面積為_________.14.已知實(shí)數(shù),滿足則的取值范圍是______.15.如圖,在三棱錐A﹣BCD中,點(diǎn)E在BD上,EA=EB=EC=ED,BDCD,△ACD為正三角形,點(diǎn)M,N分別在AE,CD上運(yùn)動(dòng)(不含端點(diǎn)),且AM=CN,則當(dāng)四面體C﹣EMN的體積取得最大值時(shí),三棱錐A﹣BCD的外接球的表面積為_____.16.定義在上的奇函數(shù)滿足,并且當(dāng)時(shí),則___三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,,(1)求的最小正周期及單調(diào)遞增區(qū)間;(2)已知銳角的內(nèi)角,,的對邊分別為,,,且,,求邊上的高的最大值.18.(12分)已知函數(shù),,使得對任意兩個(gè)不等的正實(shí)數(shù),都有恒成立.(1)求的解析式;(2)若方程有兩個(gè)實(shí)根,且,求證:.19.(12分)已知函數(shù).(1)解不等式:;(2)求證:.20.(12分)在直角坐標(biāo)系中,圓的參數(shù)方程為:(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,且長度單位相同.(1)求圓的極坐標(biāo)方程;(2)若直線:(為參數(shù))被圓截得的弦長為,求直線的傾斜角.21.(12分)已知函數(shù).(1)若,解關(guān)于的不等式;(2)若當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.22.(10分)已知直線過橢圓的右焦點(diǎn),且交橢圓于A,B兩點(diǎn),線段AB的中點(diǎn)是,(1)求橢圓的方程;(2)過原點(diǎn)的直線l與線段AB相交(不含端點(diǎn))且交橢圓于C,D兩點(diǎn),求四邊形面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】
根據(jù)充分條件、必要條件的定義進(jìn)行分析、判斷后可得結(jié)論.【題目詳解】因?yàn)?,均為非零的平面向量,存在?fù)數(shù),使得,所以向量,共線且方向相反,所以,即充分性成立;反之,當(dāng)向量,的夾角為鈍角時(shí),滿足,但此時(shí),不共線且反向,所以必要性不成立.所以“存在負(fù)數(shù),使得”是“”的充分不必要條件.故選B.【題目點(diǎn)撥】判斷p是q的什么條件,需要從兩方面分析:一是由條件p能否推得條件q;二是由條件q能否推得條件p,定義法是判斷充分條件、必要條件的基本的方法,解題時(shí)注意選擇恰當(dāng)?shù)姆椒ㄅ袛嗝}是否正確.2、D【解題分析】
根據(jù)三視圖判斷出幾何體是由一個(gè)三棱錐和一個(gè)三棱柱構(gòu)成,利用錐體和柱體的體積公式計(jì)算出體積并相加求得幾何體的體積.【題目詳解】由三視圖可知該幾何體的直觀圖是由一個(gè)三棱錐和三棱柱構(gòu)成,該多面體體積為.故選D.【題目點(diǎn)撥】本小題主要考查三視圖還原為原圖,考查柱體和錐體的體積公式,屬于基礎(chǔ)題.3、B【解題分析】
根據(jù)求出再根據(jù)也在直線上,求出b的值,即得解.【題目詳解】因?yàn)椋运?,又也在直線上,所以,解得所以.故選:B【題目點(diǎn)撥】本題主要考查導(dǎo)數(shù)的幾何意義,意在考查學(xué)生對這些知識的理解掌握水平.4、B【解題分析】
計(jì)算出的值,推導(dǎo)出,再由,結(jié)合數(shù)列的周期性可求得數(shù)列的前項(xiàng)和.【題目詳解】由題意可知,則對任意的,,則,,由,得,,,,因此,.故選:B.【題目點(diǎn)撥】本題考查數(shù)列求和,考查了數(shù)列的新定義,推導(dǎo)出數(shù)列的周期性是解答的關(guān)鍵,考查推理能力與計(jì)算能力,屬于中等題.5、A【解題分析】
所求的分母特征,利用變形構(gòu)造,再等價(jià)變形,利用基本不等式求最值.【題目詳解】解:因?yàn)闈M足,則,當(dāng)且僅當(dāng)時(shí)取等號,故選:.【題目點(diǎn)撥】本題考查通過拼湊法利用基本不等式求最值.拼湊法的實(shí)質(zhì)在于代數(shù)式的靈活變形,拼系數(shù)、湊常數(shù)是關(guān)鍵.(1)拼湊的技巧,以整式為基礎(chǔ),注意利用系數(shù)的變化以及等式中常數(shù)的調(diào)整,做到等價(jià)變形;(2)代數(shù)式的變形以拼湊出和或積的定值為目標(biāo)(3)拆項(xiàng)、添項(xiàng)應(yīng)注意檢驗(yàn)利用基本不等式的前提.6、A【解題分析】
根據(jù)奇偶性的定義可判斷出①正確;由周期函數(shù)特點(diǎn)知②錯(cuò)誤;函數(shù)定義域?yàn)椋钪迭c(diǎn)即為極值點(diǎn),由知③錯(cuò)誤;令,在和兩種情況下知均無零點(diǎn),知④正確.【題目詳解】由題意得:定義域?yàn)?,,為奇函?shù),圖象關(guān)于原點(diǎn)對稱,①正確;為周期函數(shù),不是周期函數(shù),不是周期函數(shù),②錯(cuò)誤;,,不是最值,③錯(cuò)誤;令,當(dāng)時(shí),,,,此時(shí)與無交點(diǎn);當(dāng)時(shí),,,,此時(shí)與無交點(diǎn);綜上所述:與無交點(diǎn),④正確.故選:.【題目點(diǎn)撥】本題考查函數(shù)與導(dǎo)數(shù)知識的綜合應(yīng)用,涉及到函數(shù)奇偶性和周期性的判斷、函數(shù)最值的判斷、兩函數(shù)交點(diǎn)個(gè)數(shù)問題的求解;本題綜合性較強(qiáng),對于學(xué)生的分析和推理能力有較高要求.7、B【解題分析】
執(zhí)行給定的程序框圖,輸入,逐次循環(huán),找到計(jì)算的規(guī)律,即可求解.【題目詳解】由題意,執(zhí)行給定的程序框圖,輸入,可得:第1次循環(huán):;第2次循環(huán):;第3次循環(huán):;第10次循環(huán):,此時(shí)滿足判定條件,輸出結(jié)果,故選:B.【題目點(diǎn)撥】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計(jì)算與輸出,其中解答中認(rèn)真審題,逐次計(jì)算,得到程序框圖的計(jì)算功能是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.8、B【解題分析】
根據(jù)圖象分析變化過程中在關(guān)鍵位置及部分區(qū)域,即可排除錯(cuò)誤選項(xiàng),得到函數(shù)圖象,即可求解.【題目詳解】由題意,當(dāng)時(shí),P與A重合,則與B重合,所以,故排除C,D選項(xiàng);當(dāng)時(shí),,由圖象可知選B.故選:B【題目點(diǎn)撥】本題主要考查三角函數(shù)的圖像與性質(zhì),正確表示函數(shù)的表達(dá)式是解題的關(guān)鍵,屬于中檔題.9、C【解題分析】因?yàn)?,所以的虛部是,故選C.10、A【解題分析】
由于,且為單位向量,所以可令,,再設(shè)出單位向量的坐標(biāo),再將坐標(biāo)代入中,利用兩點(diǎn)間的距離的幾何意義可求出結(jié)果.【題目詳解】解:設(shè),,,則,從而,等號可取到.故選:A【題目點(diǎn)撥】此題考查的是平面向量的坐標(biāo)、模的運(yùn)算,利用整體代換,再結(jié)合距離公式求解,屬于難題.11、B【解題分析】
先根據(jù)題意,對原式進(jìn)行化簡可得,然后利用累加法求得,然后不等式恒成立轉(zhuǎn)化為恒成立,再利用函數(shù)性質(zhì)解不等式即可得出答案.【題目詳解】由題,即由累加法可得:即對于任意的,不等式恒成立即令可得且即可得或故選B【題目點(diǎn)撥】本題主要考查了數(shù)列的通項(xiàng)的求法以及函數(shù)的性質(zhì)的運(yùn)用,屬于綜合性較強(qiáng)的題目,解題的關(guān)鍵是能夠由遞推數(shù)列求出通項(xiàng)公式和后面的轉(zhuǎn)化函數(shù),屬于難題.12、D【解題分析】
利用輔助角公式,化簡函數(shù)的解析式,再根據(jù)正弦函數(shù)的單調(diào)性,并采用整體法,可得結(jié)果.【題目詳解】因?yàn)?,由,解得,即函?shù)的增區(qū)間為,所以當(dāng)時(shí),增區(qū)間的一個(gè)子集為.故選D.【題目點(diǎn)撥】本題考查了輔助角公式,考查正弦型函數(shù)的單調(diào)遞增區(qū)間,重點(diǎn)在于把握正弦函數(shù)的單調(diào)性,同時(shí)對于整體法的應(yīng)用,使問題化繁為簡,難度較易.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
先確定頂點(diǎn)在底面的射影,再求出三棱錐的高以及各側(cè)面三角形的高,利用各個(gè)面的面積和乘以內(nèi)切球半徑等于三棱錐的體積的三倍即可解決.【題目詳解】設(shè)頂點(diǎn)在底面上的射影為H,H是三角形ABC的內(nèi)心,內(nèi)切圓半徑.三個(gè)側(cè)面與底面所成的角均為,,,的高,,設(shè)內(nèi)切球的半徑為R,∴,內(nèi)切球表面積.故答案為:.【題目點(diǎn)撥】本題考查三棱錐內(nèi)切球的表面積問題,考查學(xué)生空間想象能力,本題解題關(guān)鍵是找到內(nèi)切球的半徑,是一道中檔題.14、【解題分析】
根據(jù)約束條件畫出可行域,即可由直線的平移方法求得的取值范圍.【題目詳解】.由題意,畫出約束條件表示的平面區(qū)域如下圖所示,令,則如圖所示,圖中直線所示的兩個(gè)位置為的臨界位置,根據(jù)幾何關(guān)系可得與軸的兩個(gè)交點(diǎn)分別為,所以的取值范圍為.故答案為:【題目點(diǎn)撥】本題考查了非線性約束條件下線性規(guī)劃的簡單應(yīng)用,由數(shù)形結(jié)合法求線性目標(biāo)函數(shù)的取值范圍,屬于中檔題.15、32π【解題分析】
設(shè)ED=a,根據(jù)勾股定理的逆定理可以通過計(jì)算可以證明出CE⊥ED.AM=x,根據(jù)三棱錐的體積公式,運(yùn)用基本不等式,可以求出AM的長度,最后根據(jù)球的表面積公式進(jìn)行求解即可.【題目詳解】設(shè)ED=a,則CDa.可得CE2+DE2=CD2,∴CE⊥ED.當(dāng)平面ABD⊥平面BCD時(shí),當(dāng)四面體C﹣EMN的體積才有可能取得最大值,設(shè)AM=x.則四面體C﹣EMN的體積(a﹣x)a×xax(a﹣x),當(dāng)且僅當(dāng)x時(shí)取等號.解得a=2.此時(shí)三棱錐A﹣BCD的外接球的表面積=4πa2=32π.故答案為:32π【題目點(diǎn)撥】本題考查了基本不等式的應(yīng)用,考查了球的表面積公式,考查了數(shù)學(xué)運(yùn)算能力和空間想象能力.16、【解題分析】
根據(jù)所給表達(dá)式,結(jié)合奇函數(shù)性質(zhì),即可確定函數(shù)對稱軸及周期性,進(jìn)而由的解析式求得的值.【題目詳解】滿足,由函數(shù)對稱性可知關(guān)于對稱,且令,代入可得,由奇函數(shù)性質(zhì)可知,所以令,代入可得,所以是以4為周期的周期函數(shù),則當(dāng)時(shí),所以,所以,故答案為:.【題目點(diǎn)撥】本題考查了函數(shù)奇偶性與對稱性的綜合應(yīng)用,周期函數(shù)的判斷及應(yīng)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)的最小正周期為:;函數(shù)單調(diào)遞增區(qū)間為:;(2).【解題分析】
(1)根據(jù)誘導(dǎo)公式,結(jié)合二倍角的正弦公式、輔助角公式把函數(shù)的解析式化簡成余弦型函數(shù)解析式形式,利用余弦型函數(shù)的最小正周期公式和單調(diào)性進(jìn)行求解即可;(2)由(1)結(jié)合,求出的大小,再根據(jù)三角形面積公式,結(jié)合余弦定理和基本不等式進(jìn)行求解即可.【題目詳解】(1)的最小正周期為:;當(dāng)時(shí),即當(dāng)時(shí),函數(shù)單調(diào)遞增,所以函數(shù)單調(diào)遞增區(qū)間為:;(2)因?yàn)?,所以設(shè)邊上的高為,所以有,由余弦定理可知:(當(dāng)用僅當(dāng)時(shí),取等號),所以,因此邊上的高的最大值.【題目點(diǎn)撥】本題考查了正弦的二倍角公式、誘導(dǎo)公式、輔助角公式,考查了余弦定理、三角形面積公式,考查了基本不等式的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力.18、(1);(2)證明見解析.【解題分析】
(1)根據(jù)題意,在上單調(diào)遞減,求導(dǎo)得,分類討論的單調(diào)性,結(jié)合題意,得出的解析式;(2)由為方程的兩個(gè)實(shí)根,得出,,兩式相減,分別算出和,利用換元法令和構(gòu)造函數(shù),根據(jù)導(dǎo)數(shù)研究單調(diào)性,求出,即可證出結(jié)論.【題目詳解】(1)根據(jù)題意,對任意兩個(gè)不等的正實(shí)數(shù),都有恒成立.則在上單調(diào)遞減,因?yàn)椋?dāng)時(shí),在內(nèi)單調(diào)遞減.,當(dāng)時(shí),由,有,此時(shí),當(dāng)時(shí),單調(diào)遞減,當(dāng)時(shí),單調(diào)遞增,綜上,,所以.(2)由為方程的兩個(gè)實(shí)根,得,兩式相減,可得,因此,令,由,得,則,構(gòu)造函數(shù).則,所以函數(shù)在上單調(diào)遞增,故,即,可知,故,命題得證.【題目點(diǎn)撥】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性求函數(shù)的解析式、以及利用構(gòu)造函數(shù)法證明不等式,考查轉(zhuǎn)化思想、解題分析能力和計(jì)算能力.19、(1);(2)見解析.【解題分析】
(1)代入得,分類討論,解不等式即可;(2)利用絕對值不等式得性質(zhì),,,比較大小即可.【題目詳解】(1)由于,于是原不等式化為,若,則,解得;若,則,解得;若,則,解得.綜上所述,不等式解集為.(2)由已知條件,對于,可得.又,由于,所以.又由于,于是.所以.【題目點(diǎn)撥】本題考查了絕對值不等式得求解和恒成立問題,考查了學(xué)生分類討論,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算能力,屬于中檔題.20、(1);(2)或【解題分析】
(1)消去參數(shù)可得圓的直角坐標(biāo)方程,再根據(jù),,即可得極坐標(biāo)方程;(2)寫出直線的極坐標(biāo)方程為,代入圓的極坐標(biāo)方程,根據(jù)極坐標(biāo)的意義列出等式解出即可.【題目詳解】(1)圓:,消去參數(shù)得:,即:,∵,,.∴,.(2)∵直線:的極坐標(biāo)方程為,當(dāng)時(shí).即:,∴或.∴或,∴直線的傾斜角為或.【題目點(diǎn)撥】本題主要考查了參數(shù)方程化為普通方程,直角坐標(biāo)方程化為極坐標(biāo)方程以及極坐標(biāo)的幾何意義,屬于中檔題.21、(1)(2)【解題分析】
(1)利用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度鏟車租賃及保養(yǎng)維護(hù)合同范本2篇
- 二零二五版影視作品獨(dú)家發(fā)行及宣傳推廣合同3篇
- 標(biāo)題5:2025版智能交通系統(tǒng)建設(shè)承包合同范本3篇
- 二零二五年礦山資產(chǎn)轉(zhuǎn)讓與礦山安全生產(chǎn)監(jiān)督合同3篇
- 浙江省購房合同2025年度7月1日起實(shí)施修訂2篇
- 二零二五年度水電安裝與施工監(jiān)理兼職合同2篇
- 二零二五版鈑金展柜環(huán)保認(rèn)證與綠色產(chǎn)品采購合同3篇
- 二零二五版單位間融資保證借款合同3篇
- 二零二五年鋼筋原材料市場風(fēng)險(xiǎn)管理合同2篇
- 二零二五版?zhèn)€性化家庭貨物配送服務(wù)合同范本3篇
- 河南省鄭州外國語高中-【高二】【上期中】【把握現(xiàn)在 蓄力高三】家長會(huì)【課件】
- 天津市武清區(qū)2024-2025學(xué)年八年級(上)期末物理試卷(含解析)
- 2025年中煤電力有限公司招聘筆試參考題庫含答案解析
- 企業(yè)內(nèi)部控制與財(cái)務(wù)風(fēng)險(xiǎn)防范
- 高端民用航空復(fù)材智能制造交付中心項(xiàng)目環(huán)評資料環(huán)境影響
- 建設(shè)項(xiàng)目施工現(xiàn)場春節(jié)放假期間的安全管理方案
- 胃潴留護(hù)理查房
- 污水處理廠運(yùn)營方案計(jì)劃
- 山東省高等學(xué)校精品課程
- 三菱張力控制器LE-40MTA-E說明書
- 生活垃圾填埋場污染控制標(biāo)準(zhǔn)
評論
0/150
提交評論