版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年云南省鎮(zhèn)康縣九年級數(shù)學第一學期期末復習檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.如圖,一農戶要建一個矩形花圃,花圃的一邊利用長為12m的住房墻,另外三邊用25m長的籬笆圍成,為方便進出,在垂直于住房墻的一邊留一個1m寬的門,花圃面積為80m2,設與墻垂直的一邊長為xm,則可以列出關于x的方程是()A.x(26-2x)=80 B.x(24-2x)=80C.(x-1)(26-2x)=80 D.x(25-2x)=802.下列運算正確的是()A. B.C. D.3.若點,在反比例函數(shù)上,則的大小關系是()A. B. C. D.4.用配方法解一元二次方程,可將方程配方為A. B. C. D.5.拋物線的對稱軸為A. B. C. D.6.若一個圓錐的側面積是底面積的2倍,則圓錐側面展開圖的扇形的圓心角為()A.120° B.180° C.240° D.300°7.正方形ABCD內接于⊙O,若⊙O的半徑是,則正方形的邊長是()A.1 B.2 C. D.28.小明在太陽光下觀察矩形木板的影子,不可能是()A.平行四邊形 B.矩形 C.線段 D.梯形9.如圖,下列條件中,能判定的是()A. B. C. D.10.已知如圖,在正方形ABCD中,AD=4,E,F(xiàn)分別是CD,BC上的一點,且∠EAF=45°,EC=1,將△ADE繞點A沿順時針方向旋轉90°后與△ABG重合,連接EF,過點B作BM∥AG,交AF于點M,則以下結論:①DE+BF=EF,②BF=,③AF=,④S△MEF=中正確的是A.①②③ B.②③④ C.①③④ D.①②④11.麗華根據(jù)演講比賽中九位評委所給的分數(shù)作了如下表格:平均數(shù)中位數(shù)眾數(shù)方差8.58.38.10.15如果去掉一個最高分和一個最低分,則表中數(shù)據(jù)一定不發(fā)生變化的是()A.平均數(shù) B.眾數(shù) C.方差 D.中位數(shù)12.下列四個點,在反比例函數(shù)y=圖象上的是(
)A.(1,-6) B.(2,4) C.(3,-2) D.(-6,-1)二、填空題(每題4分,共24分)13.雙曲線在每個象限內,函數(shù)值y隨x的增大而增大,則m的取值范圍是__________14.如圖,在軸的正半軸上依次截取……,過點、、、、……,分別作軸的垂線與反比例函數(shù)的圖象相交于點、、、、……,得直角三角形、,,,……,并設其面積分別為、、、、……,則__.的整數(shù)).15.若線段AB=6cm,點C是線段AB的一個黃金分割點(AC>BC),則AC的長為cm(結果保留根號).16.若二次函數(shù)的對稱軸為直線,則關于的方程的解為______.17.如圖,一組平行橫格線,其相鄰橫格線間的距離都相等,已知點A、B、C、D、O都在橫格線上,且線段AD,BC交于點O,則AB:CD等于______.18.若A(-2,a),B(1,b),C(2,c)為二次函數(shù)的圖象上的三點,則a,b,c的大小關系是__________________.(用“<”連接)三、解答題(共78分)19.(8分)已知反比例函數(shù)y=的圖象與一次函數(shù)y=kx+m的圖象相交于點A(2,1).(1)分別求出這兩個函數(shù)的解析式;(2)當x取什么范圍時,反比例函數(shù)值大于0;(3)若一次函數(shù)與反比例函數(shù)另一交點為B,且縱坐標為﹣4,當x取什么范圍時,反比例函數(shù)值大于一次函數(shù)的值;(4)試判斷點P(﹣1,5)關于x軸的對稱點P′是否在一次函數(shù)y=kx+m的圖象上.20.(8分)如圖,四邊形中,平分.(1)求證:;(2)求證:點是的中點;(3)若,求的長.21.(8分)如圖,Rt△ABC中,∠C=90°,E是AB邊上一點,D是AC邊上一點,且點D不與A、C重合,ED⊥AC.(1)當sinB=時,①求證:BE=2CD.②當△ADE繞點A旋轉到如圖2的位置時(45°<∠CAD<90°).BE=2CD是否成立?若成立,請給出證明;若不成立.請說明理由.(2)當sinB=時,將△ADE繞點A旋轉到∠DEB=90°,若AC=10,AD=2,求線段CD的長.22.(10分)在初中階段的函數(shù)學習中,我們經(jīng)歷了“確定函數(shù)的表達式——利用函數(shù)圖象研其性質——運用函數(shù)解決問題”的學習過程.如圖,在平面直角坐標系中己經(jīng)繪制了一條直線.另一函數(shù)與的函數(shù)關系如下表:…-6-5-4-3-2-10123456……-2-0.2511.7521.751-0.25-2-4.25-7-10.25-14…(1)求直線的解析式;(2)請根據(jù)列表中的數(shù)據(jù),繪制出函數(shù)的近似圖像;(3)請根據(jù)所學知識并結合上述信息擬合出函數(shù)的解折式,并求出與的交點坐標.23.(10分)如圖,⊙O與△ABC的AC邊相切于點C,與BC邊交于點E,⊙O過AB上一點D,且DE∥AO,CE是⊙O的直徑.(1)求證:AB是⊙O的切線;(2)若BD=4,EC=6,求AC的長.24.(10分)學校為獎勵“漢字聽寫大賽”的優(yōu)秀學生,派王老師到商店購買某種獎品,他看到如表所示的關于該獎品的銷售信息,便用1400元買回了獎品,求王老師購買該獎品的件數(shù).購買件數(shù)銷售價格不超過30件單價40元超過30件每多買1件,購買的所有物品單價將降低0.5元,但單價不得低于30元25.(12分)請認真閱讀下面的數(shù)學小探究,完成所提出的問題(1)探究1,如圖①,在等腰直角三角形ABC中,∠ACB=90°,BC=3,將邊AB繞點B順時針旋轉90°得到線段BD,連接CD,過點D作BC邊上的高DE,則DE與BC的數(shù)量關系是.△BCD的面積為.(2)探究2,如圖②,在一般的Rt△ABC中,∠ACB=90°,BC=,將邊AB繞點B順時針旋轉90°得到線段BD,連接CD,請用含的式子表示△BCD的面積,并說明理由.26.列方程解應用題.青山村種的水稻2010年平均每公頃產6000kg,2012年平均每公頃產7260kg,求水稻每公頃產量的年平均增長率.
參考答案一、選擇題(每題4分,共48分)1、A【分析】設與墻垂直的一邊長為xm,則與墻平行的一邊長為(26-2x)m,根據(jù)題意可列出方程.【詳解】解:設與墻垂直的一邊長為xm,則與墻平行的一邊長為(26-2x)m,根據(jù)題意得:x(26-2x)=1.故選A.【點睛】本題考核知識點:列一元二次方程解應用題.解題關鍵點:找出相等關系,列方程.2、D【分析】根據(jù)題意利用合并同類項法則、完全平方公式、同底數(shù)冪的乘法運算法則及冪的乘方運算法則,分別化簡求出答案.【詳解】解:A.合并同類項,系數(shù)相加字母和指數(shù)不變,,此選項不正確;B.,是完全平方公式,(a-b)2=a2-2ab+b2,此選項錯誤;C.,同底數(shù)冪乘法底數(shù)不變指數(shù)相加,a2·a3=a5,此選項不正確;D.,冪的乘方底數(shù)不變指數(shù)相乘,(-a)4=(-1)4.a4=a4,此選項正確.故選:D【點睛】本題考查了有理式的運算法則,合并同類項的關鍵正確判斷同類項,然后按照合并同類項的法則進行合并;遇到冪的乘方時,需要注意若括號內有“-”時,其結果的符號取決于指數(shù)的奇偶性.3、A【分析】由k<0可得反比例函數(shù)的圖象在二、四象限,y隨x的增大而增大,可知y3<0,y1>0,y2>0,根據(jù)反比例函數(shù)的增減性即可得答案.【詳解】∵k<0,∴反比例函數(shù)的圖象在二、四象限,y隨x的增大而增大,∴y3<0,y1>0,y2>0,∵-3<-1,∴y1<y2,∴,故選:A.【點睛】本題考查反比例函數(shù)的性質,對于反比例函數(shù)y=(k≠0),當k>0時,圖象在一、三象限,在各象限,y隨x的增大而減小;當k<0時,圖象在二、四象限,在各象限內,y隨x的增大而增大;熟練掌握反比例函數(shù)的性質是解題關鍵.4、A【解析】試題解析:故選A.5、B【分析】根據(jù)頂點式的坐標特點,直接寫出對稱軸即可.【詳解】解∵:拋物線y=-x2+2是頂點式,
∴對稱軸是直線x=0,即為y軸.
故選:B.【點睛】此題考查了二次函數(shù)的性質,二次函數(shù)y=a(x-h)2+k的頂點坐標為(h,k),對稱軸為直線x=h.6、B【詳解】試題分析:設母線長為R,底面半徑為r,∴底面周長=2πr,底面面積=πr2,側面面積=πrR,∵側面積是底面積的2倍,∴2πr2=πrR,∴R=2r,設圓心角為n,有=2πr=πR,∴n=180°.故選B.考點:圓錐的計算7、B【分析】作OE⊥AD于E,連接OD,在Rt△ODE中,根據(jù)垂徑定理和勾股定理即可求解.【詳解】解:作OE⊥AD于E,連接OD,則OD=.在Rt△ODE中,易得∠EDO為45,△ODE為等腰直角三角形,ED=OE,OD===.可得:ED=1,AD=2ED=2,所以B選項是正確的.【點睛】此題主要考查了正多邊形和圓,本題需仔細分析圖形,利用垂徑定理與勾股定理即可解決問題.8、D【分析】根據(jù)平行投影的特點可確定矩形木板與地面平行且與光線垂直時所成的投影為矩形;當矩形木板與光線方向平行且與地面垂直時所成的投影為一條線段;除以上兩種情況矩形在地面上所形成的投影均為平行四邊形,據(jù)此逐一判斷即可得答案.【詳解】A.將木框傾斜放置形成的影子為平行四邊形,故該選項不符合題意,B.將矩形木框與地面平行放置時,形成的影子為矩形,故該選項不符合題意,C.將矩形木框立起與地面垂直放置時,形成的影子為線段,D.∵由物體同一時刻物高與影長成比例,且矩形對邊相等,梯形兩底不相等,∴得到投影不可能是梯形,故該選項符合題意,故選:D.【點睛】本題考查了平行投影特點:在同一時刻,不同物體的物高和影長成比例,平行物體的影子仍舊平行或重合.靈活運用平行投影的性質是解題的關鍵.9、D【分析】根據(jù)相似三角形的各個判定定理逐一分析即可.【詳解】解:∵∠A=∠A若,不是對應角,不能判定,故A選項不符合題意;若,不是對應角,不能判定,故B選項不符合題意;若,但∠A不是兩組對應邊的夾角,不能判定,故C選項不符合題意;若,根據(jù)有兩組對應邊成比例且夾角對應相等的兩個三角形相似可得,故D選項符合題意.故選D.【點睛】此題考查的是使兩個三角形相似所添加的條件,掌握相似三角形的各個判定定理是解決此題的關鍵.10、D【分析】利用全等三角形的性質條件勾股定理求出的長,再利用相似三角形的性質求出△BMF的面積即可【詳解】解:∵AG=AE,∠FAE=∠FAG=45°,AF=AF,∴△AFE△AFG,∴EF=FG∵DE=BG∴EF=FG=BG+FB=DE+BF故①正確∵BC=CD=AD=4,EC=1∴DE=3,設BF=x,則EF=x+3,CF=4-x,在Rt△ECF中,(x+3)2=(4-x)2+12解得x=∴BF=,AF=故②正確,③錯誤,∵BM∥AG∴△FBM~△FGA∴∴S△MEF=,故④正確,故選D.【點睛】本題考查旋轉變換、正方形的性質、全等三角形的判定和性質等知識,解題的關鍵是靈活運用所學知識解決問題,學會添加常用輔助線,構造全等三角形解決問題,屬于中考選擇題中的壓軸題11、D【解析】去掉一個最高分和一個最低分對中位數(shù)沒有影響,故選D.12、D【解析】由可得xy=6,故選D.二、填空題(每題4分,共24分)13、【分析】根據(jù)反比例函數(shù)的性質可知,y隨x的增大而增大則k知小于0,即m-2<0,解得m的范圍即可.【詳解】∵反比例函數(shù)y隨x的增大而增大∴m-2<0則m<2【點睛】本題考查了反比例函數(shù)的性質,函數(shù)值y隨x的增大而增大則k小于0,函數(shù)值y隨x的增大而減小則k大于0.14、【解析】根據(jù)反比例函數(shù)y=中k的幾何意義再結合圖象即可解答.【詳解】∵過雙曲線上任意一點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S是個定值,S=|k|.∴=1,=1,∵O=,∴==,同理可得,=1====.故答案是:.【點睛】本題考查反比例函數(shù)系數(shù)k的幾何意義.15、3(﹣1)【分析】把一條線段分成兩部分,使其中較長的線段為全線段與較短線段的比例中項,這樣的線段分割叫做黃金分割,他們的比值()叫做黃金比.【詳解】根據(jù)黃金分割點的概念和AC>BC,得:AC=AB=×6=3(﹣1).故答案為:3(﹣1).16、,【分析】根據(jù)對稱軸方程求得b,再代入解一元二次方程即可.【詳解】解:∵二次函數(shù)y=x2+bx-5的對稱軸為直線x=1,∴=1,即b=-2∴解得:,故答案為,.【點睛】本題主要考查的是拋物線與x軸的交點、一元二次方程等知識,根據(jù)拋物線的對稱軸確定b的值是解答本題的關鍵.17、2:1.【解析】過點O作OE⊥AB于點E,延長EO交CD于點F,可得OF⊥CD,由AB//CD,可得△AOB∽△DOC,根據(jù)相似三角形對應高的比等于相似比可得,由此即可求得答案.【詳解】如圖,過點O作OE⊥AB于點E,延長EO交CD于點F,∵AB//CD,∴∠OFD=∠OEA=90°,即OF⊥CD,∵AB//CD,∴△AOB∽△DOC,又∵OE⊥AB,OF⊥CD,練習本中的橫格線都平行,且相鄰兩條橫格線間的距離都相等,∴=,故答案為:2:1.【點睛】本題考查了相似三角形的的判定與性質,熟練掌握相似三角形對應高的比等于相似比是解本題的關鍵.18、a<b<c【分析】先求出二次函數(shù)的對稱軸,再根據(jù)點到對稱軸的距離遠近即可解答.【詳解】由二次函數(shù)的解析式可知,對稱軸為直線x=-1,且圖象開口向上,∴點離對稱軸距離越遠函數(shù)值越大,∵-1-(-2)=1,1-(-1)=2,2-(-1)=3,∴a<b<c,故答案為:a<b<c.【點睛】此題主要考查二次函數(shù)圖象上點的坐標特征,熟練掌握二次函數(shù)的頂點式以及圖象上點的坐標特征是解答的關鍵.三、解答題(共78分)19、(1)y=,y=2x﹣3;(2)x>1;(3)x<﹣1.5或1<x<2;(4)點P′在直線上.【詳解】試題分析:(1)根據(jù)題意,反比例函數(shù)y=的圖象過點A(2,1),可求得k的值,進而可得解析式;一次函數(shù)y=kx+m的圖象過點A(2,1),代入求得m的值,從而得出一次函數(shù)的解析式;(2)根據(jù)(1)中求得的解析式,當y>1時,解得對應x的取值即可;(3)由題意可知,反比例函數(shù)值大于一次函數(shù)的值,即可得>2x﹣3,解得x的取值范圍即可;(4)先根據(jù)題意求出P′的坐標,再代入一次函數(shù)的解析式即可判斷P′是否在一次函數(shù)y=kx+m的圖象上..試題解析:解:(1)根據(jù)題意,反比例函數(shù)y=的圖象與一次函數(shù)y=kx+m的圖象相交于點A(2,1),則反比例函數(shù)y=中有k=2×1=2,y=kx+m中,k=2,又∵過(2,1),解可得m=﹣3;故其解析式為y=,y=2x﹣3;(2)由(1)可得反比例函數(shù)的解析式為y=,令y>1,即>1,解可得x>1.(3)根據(jù)題意,要反比例函數(shù)值大于一次函數(shù)的值,即>2x﹣3,解可得x<﹣1.5或1<x<2.(4)根據(jù)題意,易得點P(﹣1,5)關于x軸的對稱點P′的坐標為(﹣1,﹣5)在y=2x﹣3中,x=﹣1時,y=﹣5;故點P′在直線上.考點:反比例函數(shù)與一次函數(shù)的交點問題.20、(1)見解析;(2)見解析;(3)【分析】(1)通過證明△ABD∽△BCD,可得,可得結論;(2)通過和相似得出∠MBD=∠MDB,在利用同角的余角相等得出∠A=∠ABM,由等腰三角形的性質可得結論;(3)由平行線的性質可證∠MBD=∠BDC,即可證AM=MD=MB=4,由BD2=AD?CD和勾股定理可求MC的長,通過證明△MNB∽△CND,可得.【詳解】解:(1)證明:∵DB平分∠ADC,
∴∠ADB=∠CDB,且∠ABD=∠BCD=90°,
∴△ABD∽△BCD,∴,∴BD2=AD?CD(2)證明:∵,∴∠MBD=∠BDC,∠MBC=90°,∵∠MDB=∠CDB,∴∠MBD=∠MDB,∴MB=MD,∵∠MBD+∠ABM=90°,∴∠ABM=∠CBD,∵∠CBD=∠A,∴∠A=∠ABM,∴MA=MB,∴MA=MD,即M為AD中點;(3)∵BM∥CD
∴∠MBD=∠BDC
∴∠ADB=∠MBD,且∠ABD=90°
∴BM=MD,∠MAB=∠MBA
∴BM=MD=AM=4
∵BD2=AD?CD,且CD=6,AD=8,
∴BD2=48,
∴BC2=BD2-CD2=12
∴MC2=MB2+BC2=28
∴MC=,∵BM∥CD
∴△MNB∽△CND∴,且MC=,∴.【點睛】本題考查了相似三角形的判定和性質,等腰三角形的判定和性質,勾股定理,直角三角形的性質,求MC的長度是本題的關鍵.21、(1)①證明見解析;②BE=2CD成立.理由見解析;(2)2或4.【分析】(1)①作EH⊥BC于點H,由sinB=可得∠B=30°,∠A=60°,根據(jù)ED⊥AC可證明四邊形CDEH是矩形,根據(jù)矩形的性質可得EH=CD,根據(jù)正弦的定義即可得BE=2CD;②根據(jù)旋轉的性質可得∠BAC=∠EAD,利用角的和差關系可得∠CAD=∠BAE,根據(jù)=可證明△ACD∽△ABE,及相似三角形的性質可得,進而可得BE=2CD;(2)由sinB=可得∠ABC=∠BAC=∠DAE=45°,根據(jù)ED⊥AC可得AD=DE,AC=BC,如圖,分兩種情況討論,通過證明△ACD∽△ABE,求出CD的長即可.【詳解】(1)①作EH⊥BC于點H,∵Rt△ABC中,∠C=90°,sinB=,∴∠B=30°,∴∠A=60°,∵ED⊥AC∴∠ADE=∠C=90°,∴四邊形CDEH是矩形,即EH=CD.∴在Rt△BEH中,∠B=30°∴BE=2EH∴BE=2CD.②BE=2CD成立.理由:∵△ADE繞點A旋轉到如圖2的位置,∴∠BAC=∠EAD=60°,∴∠BAC+∠BAD=∠EAD+∠BAD,即∠CAD=∠BAE,∵AC:AB=1:2,AD:AE=1:2,∴,∴△ACD∽△ABE,∴,又∵Rt△ABC中,=2,∴=2,即BE=2CD.(2)∵sinB=,∴∠ABC=∠BAC=∠DAE=45°,∵ED⊥AC,∴∠AED=∠BAC=45°,∴AD=DE,AC=BC,將△ADE繞點A旋轉,∠DEB=90°,分兩種情況:①如圖所示,過A作AF⊥BE于F,則∠F=90°,當∠DEB=90°時,∠ADE=∠DEF=90°,又∵AD=DE,∴四邊形ADEF是正方形,∴AD=AF=EF=2,∵AC=10=BC,∴AB=10,∴Rt△ABF中,BF==6,∴BE=BF﹣EF=4,又∵△ABC和△ADE都是直角三角形,且∠BAC=∠EAD=45°,∴∠CAD=∠BAE,∵AC:AB=1:,AD:AE=1:,∴,∴△ACD∽△ABE,∴=,即=,∴CD=2;②如圖所示,過A作AF⊥BE于F,則∠AFE=∠AFB=90°,當∠DEB=90°,∠DEB=∠ADE=90°,又∵AD=ED,∴四邊形ADEF是正方形,∴AD=EF=AF=2,又∵AC=10=BC,∴AB=10,∴Rt△ABF中,BF==6,∴BE=BF+EF=8,又∵△ACD∽△ABE,∴=,即=,∴CD=4,綜上所述,線段CD的長為2或4.【點睛】本題考查三角函數(shù)的定義、特殊角的三角函數(shù)值及相似三角形的判定與性質,根據(jù)正弦值得出∠ABC的度數(shù)并熟練掌握相似三角形的判定定理解題關鍵.22、(1);(2)見解析;(3)交點為和【分析】(1)根據(jù)待定系數(shù)法即可求出直線的解析式;(2)描點連線即可;(3)根據(jù)圖象得出函數(shù)為二次函數(shù),頂點坐標為(-2,2),用待定系數(shù)法即可求出拋物線的解析式,解方程組即可得出與交點坐標.【詳解】(1)設直線的解析式為y=kx+m.由圖象可知,直線過點(6,0),(0,-3),∴,解得:,∴;(2)圖象如圖:(3)由圖象可知:函數(shù)為拋物線,頂點為.設其解析式為:從表中選一點代入得:1=4a+2,解出:,∴,即.聯(lián)立兩個解析式:,解得:或,∴交點為和.【點睛】本題考查了二次函數(shù)的圖象和性質.根據(jù)圖象求出一次函數(shù)和二次函數(shù)的解析式是解答本題的關鍵.23、(1)見解析;(2)AC=1【分析】(1)要證AB切線,連接半徑OD,證∠ADO=90°即可,由∠ACB=90°,由OD=OE,DE∥OA,可得∠AOD=∠AOC,證△AOD≌△AOC(SAS)即可,(2)AB是⊙O的切線,∠BDO=90°,由勾股定理求BE,BC=BE+EC可求,利用AD,AC是⊙O的切線長,設AD=AC=x,在Rt△ABC中,AB2=AC2+BC2構造方程求AC即可.【詳解】(1)證明:連接OD,∵OD=OE,∴∠OED=∠ODE,∵DE∥OA,∴∠ODE=∠AOD,∠DEO=∠AOC,∴∠AOD=∠AOC,∵AC是切線,∴∠ACB=90°,在△AOD和△AOC中,∴△AOD≌△AOC(SAS),∴∠ADO=∠ACB=90°,∵OD是半徑,∴AB是⊙O的切線;(2)解:∵AB是⊙O的切線,∴∠BDO=90°,∴BD2+OD2=OB2,∴42+32=(3+BE)2,∴BE=2,∴BC=BE+EC=8,∵AD,AC是⊙O的切線,∴AD=AC,設AD=AC=x,在Rt△ABC中,AB2=AC2+BC2,∴(4+x)2=x2+82,解得:x=1,∴AC=1.【點睛】本題考查AB切線與切線長問題,掌握連接半徑OD,證∠ADO=90°是證切線常用方法,利用△AOD≌
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 設備類貨物運輸合同
- 私家車租車合同范本
- 木門購買安裝合同范本
- 會展服務協(xié)議合同正規(guī)范本
- 《教師嗓音保健》課件
- 企業(yè)人員借調合同
- 建筑工程施工總承包合同補充協(xié)議
- 光之教堂調研報告
- 基于非鉛鈣鈦礦單晶的高性能X射線探測器研究
- 基于雙氰基新型熒光染料生物硫醇熒光探針的構建及其性能研究
- (新版)工業(yè)機器人系統(tǒng)操作員(三級)職業(yè)鑒定理論考試題庫(含答案)
- 教育環(huán)境分析報告
- 人力資源服務公司章程
- (正式版)CB∕T 4552-2024 船舶行業(yè)企業(yè)安全生產文件編制和管理規(guī)定
- 病案管理質量控制指標檢查要點
- 2024年西藏中考物理模擬試題及參考答案
- 九型人格與領導力講義
- 人教版五年級上冊數(shù)學脫式計算練習200題及答案
- 卵巢黃體囊腫破裂教學查房
- 醫(yī)院定崗定編
- 2023年大學物理化學實驗報告化學電池溫度系數(shù)的測定
評論
0/150
提交評論