廣東省肇慶市百花中學2023-2024學年數(shù)學高三上期末學業(yè)水平測試試題含解析_第1頁
廣東省肇慶市百花中學2023-2024學年數(shù)學高三上期末學業(yè)水平測試試題含解析_第2頁
廣東省肇慶市百花中學2023-2024學年數(shù)學高三上期末學業(yè)水平測試試題含解析_第3頁
廣東省肇慶市百花中學2023-2024學年數(shù)學高三上期末學業(yè)水平測試試題含解析_第4頁
廣東省肇慶市百花中學2023-2024學年數(shù)學高三上期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省肇慶市百花中學2023-2024學年數(shù)學高三上期末學業(yè)水平測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過雙曲線的左焦點作直線交雙曲線的兩天漸近線于,兩點,若為線段的中點,且(為坐標原點),則雙曲線的離心率為()A. B. C. D.2.如圖是計算值的一個程序框圖,其中判斷框內應填入的條件是()A.B.C.D.3.已知向量與的夾角為,定義為與的“向量積”,且是一個向量,它的長度,若,,則()A. B.C.6 D.4.若函數(shù)的圖象過點,則它的一條對稱軸方程可能是()A. B. C. D.5.已知邊長為4的菱形,,為的中點,為平面內一點,若,則()A.16 B.14 C.12 D.86.已知雙曲線,點是直線上任意一點,若圓與雙曲線的右支沒有公共點,則雙曲線的離心率取值范圍是().A. B. C. D.7.已知函數(shù)(),若函數(shù)有三個零點,則的取值范圍是()A. B.C. D.8.小明有3本作業(yè)本,小波有4本作業(yè)本,將這7本作業(yè)本混放在-起,小明從中任取兩本.則他取到的均是自己的作業(yè)本的概率為()A. B. C. D.9.已知函數(shù),則不等式的解集是()A. B. C. D.10.已知等差數(shù)列的前n項和為,且,則()A.4 B.8 C.16 D.211.已知雙曲線x2a2-y2b2=1(a>0,b>0),其右焦點F的坐標為(c,0),點A是第一象限內雙曲線漸近線上的一點,O為坐標原點,滿足|OA|=A.2 B.2 C.23312.已知向量,則是的()A.充分不必要條件 B.必要不充分條件C.既不充分也不必要條件 D.充要條件二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系xOy中,A,B為x軸正半軸上的兩個動點,P(異于原點O)為y軸上的一個定點.若以AB為直徑的圓與圓x2+(y-2)2=1相外切,且∠APB的大小恒為定值,則線段OP的長為_____.14.如圖,在平行四邊形中,,,則的值為_____.15.實數(shù)滿足,則的最大值為_____.16.學校藝術節(jié)對同一類的四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:甲說:“作品獲得一等獎”;乙說:“作品獲得一等獎”;丙說:“,兩項作品未獲得一等獎”;丁說:“是或作品獲得一等獎”,若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是___.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,底面是菱形,對角線交于點為棱的中點,.求證:(1)平面;(2)平面平面.18.(12分)[2018·石家莊一檢]已知函數(shù).(1)若,求函數(shù)的圖像在點處的切線方程;(2)若函數(shù)有兩個極值點,,且,求證:.19.(12分)某企業(yè)現(xiàn)有A.B兩套設備生產某種產品,現(xiàn)從A,B兩套設備生產的大量產品中各抽取了100件產品作為樣本,檢測某一項質量指標值,若該項質量指標值落在內的產品視為合格品,否則為不合格品.圖1是從A設備抽取的樣本頻率分布直方圖,表1是從B設備抽取的樣本頻數(shù)分布表.圖1:A設備生產的樣本頻率分布直方圖表1:B設備生產的樣本頻數(shù)分布表質量指標值頻數(shù)2184814162(1)請估計A.B設備生產的產品質量指標的平均值;(2)企業(yè)將不合格品全部銷毀后,并對合格品進行等級細分,質量指標值落在內的定為一等品,每件利潤240元;質量指標值落在或內的定為二等品,每件利潤180元;其它的合格品定為三等品,每件利潤120元.根據(jù)圖1、表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產品中抽到一件相應等級產品的概率.企業(yè)由于投入資金的限制,需要根據(jù)A,B兩套設備生產的同一種產品每件獲得利潤的期望值調整生產規(guī)模,請根據(jù)以上數(shù)據(jù),從經濟效益的角度考慮企業(yè)應該對哪一套設備加大生產規(guī)模?20.(12分)已知函數(shù)的定義域為.(1)求實數(shù)的取值范圍;(2)設實數(shù)為的最小值,若實數(shù),,滿足,求的最小值.21.(12分)如圖,在正四棱錐中,,,為上的四等分點,即.(1)證明:平面平面;(2)求平面與平面所成銳二面角的余弦值.22.(10分)已知函數(shù).(1)當時,求函數(shù)的圖象在處的切線方程;(2)討論函數(shù)的單調性;(3)當時,若方程有兩個不相等的實數(shù)根,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由題意可得雙曲線的漸近線的方程為.∵為線段的中點,∴,則為等腰三角形.∴由雙曲線的的漸近線的性質可得∴∴,即.∴雙曲線的離心率為故選C.點睛:本題考查了橢圓和雙曲線的定義和性質,考查了離心率的求解,同時涉及到橢圓的定義和雙曲線的定義及三角形的三邊的關系應用,對于求解曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關于的齊次式,轉化為的齊次式,然后轉化為關于的方程(不等式),解方程(不等式),即可得(的取值范圍).2、B【解析】

根據(jù)計算結果,可知該循環(huán)結構循環(huán)了5次;輸出S前循環(huán)體的n的值為12,k的值為6,進而可得判斷框內的不等式.【詳解】因為該程序圖是計算值的一個程序框圈所以共循環(huán)了5次所以輸出S前循環(huán)體的n的值為12,k的值為6,即判斷框內的不等式應為或所以選C【點睛】本題考查了程序框圖的簡單應用,根據(jù)結果填寫判斷框,屬于基礎題.3、D【解析】

先根據(jù)向量坐標運算求出和,進而求出,代入題中給的定義即可求解.【詳解】由題意,則,,得,由定義知,故選:D.【點睛】此題考查向量的坐標運算,引入新定義,屬于簡單題目.4、B【解析】

把已知點坐標代入求出,然后驗證各選項.【詳解】由題意,,或,,不妨取或,若,則函數(shù)為,四個選項都不合題意,若,則函數(shù)為,只有時,,即是對稱軸.故選:B.【點睛】本題考查正弦型復合函數(shù)的對稱軸,掌握正弦函數(shù)的性質是解題關鍵.5、B【解析】

取中點,可確定;根據(jù)平面向量線性運算和數(shù)量積的運算法則可求得,利用可求得結果.【詳解】取中點,連接,,,即.,,,則.故選:.【點睛】本題考查平面向量數(shù)量積的求解問題,涉及到平面向量的線性運算,關鍵是能夠將所求向量進行拆解,進而利用平面向量數(shù)量積的運算性質進行求解.6、B【解析】

先求出雙曲線的漸近線方程,可得則直線與直線的距離,根據(jù)圓與雙曲線的右支沒有公共點,可得,解得即可.【詳解】由題意,雙曲線的一條漸近線方程為,即,∵是直線上任意一點,則直線與直線的距離,∵圓與雙曲線的右支沒有公共點,則,∴,即,又故的取值范圍為,故選:B.【點睛】本題主要考查了直線和雙曲線的位置關系,以及兩平行線間的距離公式,其中解答中根據(jù)圓與雙曲線的右支沒有公共點得出是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.7、A【解析】

分段求解函數(shù)零點,數(shù)形結合,分類討論即可求得結果.【詳解】作出和,的圖像如下所示:函數(shù)有三個零點,等價于與有三個交點,又因為,且由圖可知,當時與有兩個交點,故只需當時,與有一個交點即可.若當時,時,顯然??=??(??)與??=4|??|有一個交點??,故滿足題意;時,顯然??=??(??)與??=4|??|沒有交點,故不滿足題意;時,顯然??=??(??)與??=4|??|也沒有交點,故不滿足題意;時,顯然與有一個交點,故滿足題意.綜上所述,要滿足題意,只需.故選:A.【點睛】本題考查由函數(shù)零點的個數(shù)求參數(shù)范圍,屬中檔題.8、A【解析】

利用計算即可,其中表示事件A所包含的基本事件個數(shù),為基本事件總數(shù).【詳解】從7本作業(yè)本中任取兩本共有種不同的結果,其中,小明取到的均是自己的作業(yè)本有種不同結果,由古典概型的概率計算公式,小明取到的均是自己的作業(yè)本的概率為.故選:A.【點睛】本題考查古典概型的概率計算問題,考查學生的基本運算能力,是一道基礎題.9、B【解析】

由導數(shù)確定函數(shù)的單調性,利用函數(shù)單調性解不等式即可.【詳解】函數(shù),可得,時,,單調遞增,∵,故不等式的解集等價于不等式的解集..∴.故選:B.【點睛】本題主要考查了利用導數(shù)判定函數(shù)的單調性,根據(jù)單調性解不等式,屬于中檔題.10、A【解析】

利用等差的求和公式和等差數(shù)列的性質即可求得.【詳解】.故選:.【點睛】本題考查等差數(shù)列的求和公式和等差數(shù)列的性質,考查基本量的計算,難度容易.11、C【解析】

計算得到Ac,bca【詳解】雙曲線的一條漸近線方程為y=bax,A故Ac,bca,F(xiàn)c,0,故Mc,故選:C.【點睛】本題考查了雙曲線離心率,意在考查學生的計算能力和綜合應用能力.12、A【解析】

向量,,,則,即,或者-1,判斷出即可.【詳解】解:向量,,,則,即,或者-1,所以是或者的充分不必要條件,故選:A.【點睛】本小題主要考查充分、必要條件的判斷,考查向量平行的坐標表示,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分析:設O2(a,0),圓O2的半徑為r(變量),OP=t(常數(shù)),利用差角的正切公式,結合以AB為直徑的圓與圓x2+(y-2)2=1相外切.且∠APB的大小恒為定值,即可求出線段OP的長.詳解:設O2(a,0),圓O2的半徑為r(變量),OP=t(常數(shù)),則∵∠APB的大小恒為定值,

∴t=,∴|OP|=.故答案為點睛:本題考查圓與圓的位置關系,考查差角的正切公式,考查學生的計算能力,屬于中檔題.14、【解析】

根據(jù)ABCD是平行四邊形可得出,然后代入AB=2,AD=1即可求出的值.【詳解】∵AB=2,AD=1,∴=1﹣4=﹣1.故答案為:﹣1.【點睛】本題考查了向量加法的平行四邊形法則,相等向量和相反向量的定義,向量數(shù)量積的運算,考查了計算能力,屬于基礎題.15、.【解析】

畫出可行域,解出可行域的頂點坐標,代入目標函數(shù)求出相應的數(shù)值,比較大小得到目標函數(shù)最值.【詳解】解:作出可行域,如圖所示,則當直線過點時直線的截距最大,z取最大值.由同理,,取最大值.故答案為:.【點睛】本題考查線性規(guī)劃的線性目標函數(shù)的最優(yōu)解問題.線性目標函數(shù)的最優(yōu)解一般在平面區(qū)域的頂點或邊界處取得,所以對于一般的線性規(guī)劃問題,若可行域是一個封閉的圖形,我們可以直接解出可行域的頂點,然后將坐標代入目標函數(shù)求出相應的數(shù)值,從而確定目標函數(shù)的最值;若可行域不是封閉圖形還是需要借助截距的幾何意義來求最值.16、C【解析】

假設獲得一等獎的作品,判斷四位同學說對的人數(shù).【詳解】分別獲獎的說對人數(shù)如下表:獲獎作品ABCD甲對錯錯錯乙錯錯對錯丙對錯對錯丁對錯錯對說對人數(shù)3021故獲得一等獎的作品是C.【點睛】本題考查邏輯推理,常用方法有:1、直接推理結果,2、假設結果檢驗條件.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)詳見解析;(2)詳見解析.【解析】

(1)連結根據(jù)中位線的性質證明即可.(2)證明,再證明平面即可.【詳解】解:證明:連結是菱形對角線的交點,為的中點,是棱的中點,平面平面平面解:在菱形中,且為的中點,,,平面平面,平面平面.【點睛】本題主要考查了線面平行與垂直的判定,屬于基礎題.18、(1)(2)見解析【解析】試題分析:(1)分別求得和,由點斜式可得切線方程;(2)由已知條件可得有兩個相異實根,,進而再求導可得,結合函數(shù)的單調性可得,從而得證.試題解析:(1)由已知條件,,當時,,,當時,,所以所求切線方程為(2)由已知條件可得有兩個相異實根,,令,則,1)若,則,單調遞增,不可能有兩根;2)若,令得,可知在上單調遞增,在上單調遞減,令解得,由有,由有,從而時函數(shù)有兩個極值點,當變化時,,的變化情況如下表單調遞減單調遞增單調遞減因為,所以,在區(qū)間上單調遞增,.另解:由已知可得,則,令,則,可知函數(shù)在單調遞增,在單調遞減,若有兩個根,則可得,當時,,所以在區(qū)間上單調遞增,所以.19、(1)30.2,29;(2)B設備【解析】

(1)平均數(shù)的估計值為組中值與頻率乘積的和;(2)要注意指標值落在內的產品才視為合格品,列出A、B設備利潤分布列,算出期望即可作出決策.【詳解】(1)A設備生產的樣本的頻數(shù)分布表如下質量指標值頻數(shù)41640121810.根據(jù)樣本質量指標平均值估計A設備生產一件產品質量指標平均值為30.2.B設備生產的樣本的頻數(shù)分布表如下質量指標值頻數(shù)2184814162根據(jù)樣本質量指標平均值估計B設備生產一件產品質量指標平均值為29.(2)A設備生產一件產品的利潤記為X,B設備生產一件產品的利潤記為Y,X240180120PY240180120P若以生產一件產品的利潤作為決策依據(jù),企業(yè)應加大B設備的生產規(guī)模.【點睛】本題考查平均數(shù)的估計值、離散隨機變量的期望,并利用期望作決策,是一個概率與統(tǒng)計綜合題,本題是一道中檔題.20、(1);(2)【解析】

(1)首先通過對絕對值內式子符號的討論,將不等式轉化為一元一次不等式組,再分別解各不等式組,最后求各不等式組解集的并集,得到所求不等式的解集;(2)首先確定m的值,然后利用柯西不等式即可證得題中的不等式.【詳解】(1)因為函數(shù)定義域為,即恒成立,所以恒成立由單調性可知當時,有最大值為4,即;(2)由(1)知,,由柯西不等式知所以,即的最小值為.當且僅當,,時,等號成立【點睛】本題主要考查絕對值不等式的解法,柯西不等式及其應用,意在考查學生的轉化能力和計算求解能力.21、(1)答案見解析.(2)【解析】

(1)根據(jù)題意可得,在中,利用余弦定理可得,然后同理可得,利用面面垂直的判定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論