廣東省百校2024屆數(shù)學(xué)高一第二學(xué)期期末考試試題含解析_第1頁
廣東省百校2024屆數(shù)學(xué)高一第二學(xué)期期末考試試題含解析_第2頁
廣東省百校2024屆數(shù)學(xué)高一第二學(xué)期期末考試試題含解析_第3頁
廣東省百校2024屆數(shù)學(xué)高一第二學(xué)期期末考試試題含解析_第4頁
廣東省百校2024屆數(shù)學(xué)高一第二學(xué)期期末考試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣東省百校2024屆數(shù)學(xué)高一第二學(xué)期期末考試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列向量組中,能作為表示它們所在平面內(nèi)的所有向量的基底的是()A., B.,C., D.,2.如圖是一個幾何體的三視圖,它對應(yīng)的幾何體的名稱是()A.棱臺 B.圓臺 C.圓柱 D.圓錐3.設(shè),函數(shù)在區(qū)間上是增函數(shù),則()A. B.C. D.4.已知向量,若,則()A. B. C. D.5.如圖所示,在正方體ABCD—A1B1C1D1中,若E是A1C1的中點,則直線CE垂直于()A.AC B.A1D1 C.A1D D.BD6.?dāng)?shù)列{an}的通項公式是an=(n+2),那么在此數(shù)列中()A.a(chǎn)7=a8最大 B.a(chǎn)8=a9最大C.有唯一項a8最大 D.有唯一項a7最大7.中,則A. B. C. D.8.“十二平均律”是通用的音律體系,明代朱載堉最早用數(shù)學(xué)方法計算出半音比例,為這個理論的發(fā)展做出了重要貢獻(xiàn).十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它的前一個單音的頻率的比都等于.若第一個單音的頻率為f,則第八個單音的頻率為A. B.C. D.9.設(shè)變量滿足約束條件:,則的最小值()A. B. C. D.10.若角的終邊經(jīng)過點,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若直線與圓有公共點,則實數(shù)的取值范圍是__________.12.已知函數(shù)是定義域為的偶函數(shù),當(dāng)時,,若關(guān)于的方程有且僅有6個不同實數(shù)根,則實數(shù)的取值范圍為______.13.若直線:與直線的交點位于第一象限,則直線的傾斜角的取值范圍是___________.14.若則的最小值是__________.15.已知腰長為的等腰直角△中,為斜邊的中點,點為該平面內(nèi)一動點,若,則的最小值________.16.直線與圓交于兩點,若為等邊三角形,則______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,角所對的邊分別為.且.(1)求的值;(2)若,求的面積.18.已知數(shù)列為等差數(shù)列,是數(shù)列的前n項和,且,.(1)求數(shù)列的通項公式;(2)令,求數(shù)列的前n項和.19.如圖所示,在平面四邊形中,為正三角形.(1)在中,角的對邊分別為,若,求角的大?。唬?)求面積的最大值.20.如圖,正方體.(1)求證:平面;(2)求異面直線AC與所成角的大小.21.在平面直角坐標(biāo)系中,直線截以原點為圓心的圓所得的弦長為.(1)求圓的方程;(2)若直線與圓切于第一象限,且與坐標(biāo)軸交于點,當(dāng)長最小時,求直線的方程;(3)設(shè)是圓上任意兩點,點關(guān)于軸的對稱點,若直線分別交軸于點和,問是否為定值?若是,請求出該定值;若不是,請說明理由.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】

以作為基底的向量需要是不共線的向量,可以從向量的坐標(biāo)發(fā)現(xiàn),,選項中的兩個向量均共線,得到正確結(jié)果是.【題目詳解】解:可以作為基底的向量需要是不共線的向量,中一個向量是零向量,兩個向量共線,不合要求中兩個向量是,,則故與不共線,故正確;中兩個向量是,兩個向量共線,項中的兩個向量是,兩個向量共線,故選:.【題目點撥】本題考查平面中兩向量的關(guān)系,屬于基礎(chǔ)題.2、B【解題分析】

直接由三視圖還原原幾何體得答案.【題目詳解】解:由三視圖還原原幾何體如圖,該幾何體為圓臺.故選:.【題目點撥】本題考查三視圖,關(guān)鍵是由三視圖還原原幾何體,屬于基礎(chǔ)題.3、C【解題分析】

首先比較自變量與的大小,然后利用單調(diào)性比較函數(shù)值與的大小.【題目詳解】因為,函數(shù)在區(qū)間上是增函數(shù),所以.故選C.【題目點撥】已知函數(shù)單調(diào)性比較函數(shù)值大小,可以借助自變量的大小來比較函數(shù)值的大小.4、A【解題分析】

先根據(jù)向量的平行求出的值,再根據(jù)向量的加法運算求出答案.【題目詳解】向量,,

解得,

∴,

故選A.【題目點撥】本題考查了向量的平行和向量的坐標(biāo)運算,屬于基礎(chǔ)題.5、D【解題分析】

在正方體內(nèi)結(jié)合線面關(guān)系證明線面垂直,繼而得到線線垂直【題目詳解】,平面,平面,則平面又因為平面則故選D【題目點撥】本題考查了線線垂直,在求解過程中先求得線面垂直,由線面垂直的性質(zhì)可得線線垂直,從而得到結(jié)果6、A【解題分析】,所以,令,解得n≤7,即n≤7時遞增,n>7遞減,所以a1<a2<a3<…<a7=a8>a9>….所以a7=a8最大.本題選擇A選項.7、B【解題分析】試題分析:由余弦定理,故選擇B考點:余弦定理8、D【解題分析】分析:根據(jù)等比數(shù)列的定義可知每一個單音的頻率成等比數(shù)列,利用等比數(shù)列的相關(guān)性質(zhì)可解.詳解:因為每一個單音與前一個單音頻率比為,所以,又,則故選D.點睛:此題考查等比數(shù)列的實際應(yīng)用,解決本題的關(guān)鍵是能夠判斷單音成等比數(shù)列.等比數(shù)列的判斷方法主要有如下兩種:(1)定義法,若()或(),數(shù)列是等比數(shù)列;(2)等比中項公式法,若數(shù)列中,且(),則數(shù)列是等比數(shù)列.9、D【解題分析】

如圖作出可行域,知可行域的頂點是A(-2,2)、B()及C(-2,-2),平移,當(dāng)經(jīng)過A時,的最小值為-8,故選D.10、B【解題分析】

根據(jù)任意角的三角函數(shù)的定義,可以直接求到本題答案.【題目詳解】因為點在角的終邊上,所以.故選:B【題目點撥】本題主要考查利用任意角的三角函數(shù)的定義求值.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

直線與圓有交點,則圓心到直線的距離小于或等于半徑.【題目詳解】直線即,圓的圓心為,半徑為,若直線與圓有交點,則,解得,故實數(shù)的取值范圍是.【題目點撥】本題考查直線與圓的位置關(guān)系,點到直線距離公式是常用方法.12、0<a≤或a.【解題分析】

運用偶函數(shù)的性質(zhì),作出函數(shù)f(x)的圖象,由5[f(x)]2﹣(5a+4)f(x)+4a=0,解得f(x)=a或f(x),結(jié)合圖象,分析有且僅有6個不同實數(shù)根的a的情況,即可得到a的范圍.【題目詳解】函數(shù)是定義域為的偶函數(shù),作出函數(shù)f(x)的圖象如圖:關(guān)于x的方程5[f(x)]2﹣(5a+4)f(x)+4a=0,解得f(x)=a或f(x),當(dāng)0≤x≤2時,f(x)∈[0,],x>2時,f(x)∈(,).由,則f(x)有4個實根,由題意,只要f(x)=a有2個實根,則由圖象可得當(dāng)0<a≤時,f(x)=a有2個實根,當(dāng)a時,f(x)=a有2個實根.綜上可得:0<a≤或a.故答案為0<a≤或a..【題目點撥】本題考查函數(shù)的奇偶性和單調(diào)性的運用,考查方程和函數(shù)的轉(zhuǎn)化思想,運用數(shù)形結(jié)合的思想方法是解決的常用方法.13、【解題分析】若直線與直線的交點位于第一象限,如圖所示:則兩直線的交點應(yīng)在線段上(不包含點),當(dāng)交點為時,直線的傾斜角為,當(dāng)交點為時,斜率,直線的傾斜角為∴直線的傾斜角的取值范圍是.故答案為14、【解題分析】

根據(jù)對數(shù)相等得到,利用基本不等式求解的最小值得到所求結(jié)果.【題目詳解】則,即由題意知,則,則當(dāng)且僅當(dāng),即時取等號本題正確結(jié)果:【題目點撥】本題考查基本不等式求解和的最小值問題,關(guān)鍵是能夠利用對數(shù)相等得到的關(guān)系,從而構(gòu)造出符合基本不等式的形式.15、【解題分析】

如圖建立平面直角坐標(biāo)系,∴,當(dāng)sin時,得到最小值為,故選.16、或【解題分析】

根據(jù)題意可得圓心到直線的距離為,根據(jù)點到直線的距離公式列方程解出即可.【題目詳解】圓,即,圓的圓心為,半徑為,∵直線與圓交于兩點且為等邊三角形,∴,故圓心到直線的距離為,即,解得或,故答案為或.【題目點撥】本題主要考查了直線和圓相交的弦長公式,以及點到直線的距離公式,考查運算能力,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】

(1)根據(jù)正弦定理求出,然后代入所求的式子即可;(2)由余弦定理求出ab=4,然后根據(jù)三角形的面積公式求出答案.【題目詳解】(1)因為,由正弦定理,得,∴;(2)∵,由余弦定理得,即,所以,解得或(舍去),所以【題目點撥】本題考查了正弦定理、余弦定理等知識.在解三角形問題中常涉及正弦定理、余弦定理、三角形面積公式及同角三角函數(shù)基本關(guān)系等問題,故應(yīng)綜合把握.18、(1)(2)【解題分析】

(1)由等差數(shù)列可得,求得,即可求得通項公式;(2)由(1),則利用裂項相消法求數(shù)列的和即可【題目詳解】解:(1)因為數(shù)列是等差數(shù)列,且,,則,解得,所以(2)由(1),,所以【題目點撥】本題考查等差數(shù)列的通項公式,考查裂項相消法求數(shù)列的和19、(1);(2).【解題分析】

(1)由正弦和角公式,化簡三角函數(shù)表達(dá)式,結(jié)合正弦定理即可求得角的大小;(2)在中,設(shè),由余弦定理及正弦定理用表示出.再根據(jù)三角形面積公式表示出,即可結(jié)合正弦函數(shù)的圖像與性質(zhì)求得最大值.【題目詳解】(1)由題意可得:∴整理得∴∴∴又∴(2)在中,設(shè),由余弦定理得:,∵為正三角形,∴,在中,由正弦定理得:,∴,∴,∵,∵,∴為銳角,,,,∵∴當(dāng)時,.【題目點撥】本題考查了三角函數(shù)式的化簡變形,正弦定理與余弦定理在解三角形中的應(yīng)用,三角形面積的表示方法,正弦函數(shù)的圖像與性質(zhì)的綜合應(yīng)用,屬于中檔題.20、(1)見解析(2)【解題分析】

(1)證明,,即得證;(2)求出即得異面直線AC與所成角的大?。绢}目詳解】(1)證明:因為為正方體,所以ABCD為正方形.所以,又因為平面ABCD,平面ABCD,故,又,平面,所以平面.(2)因為,所以直線AC與所成的角或補角即為AC與的角,又三角形為等邊三角形,所以,即直線AC與所成的角為.【題目點撥】本題主要考查線面位置關(guān)系的證明,考查異面直線所成角的計算,意在考查學(xué)生對這些知識的理解掌握水平.21、(1);(1);(3)定值為.【解題分析】試題分析:(1)求出點到直線的距離,進(jìn)而可求圓的半徑,即可得到圓

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論