2024屆湖北省宜昌市西陵區(qū)葛洲壩中學(xué)高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2024屆湖北省宜昌市西陵區(qū)葛洲壩中學(xué)高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2024屆湖北省宜昌市西陵區(qū)葛洲壩中學(xué)高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2024屆湖北省宜昌市西陵區(qū)葛洲壩中學(xué)高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2024屆湖北省宜昌市西陵區(qū)葛洲壩中學(xué)高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆湖北省宜昌市西陵區(qū)葛洲壩中學(xué)高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.直線分別與軸,軸交于,兩點,點在圓上,則面積的取值范圍是A. B. C. D.2.某三棱柱的底面是邊長為2的正三角形,高為6,則該三棱柱的體積為A. B. C. D.3.函數(shù)y=tan(–2x)的定義域是()A.{x|x≠+,k∈Z} B.{x|x≠kπ+,k∈Z}C.{x|x≠+,k∈Z} D.{x|x≠kπ+,k∈Z}4.若對任意的正數(shù)a,b滿足,則的最小值為A.6 B.8 C.12 D.245.已知兩個單位向量的夾角為,則下列結(jié)論不正確的是()A.方向上的投影為 B.C. D.6.已知全集,集合,,則為()A.{1,2,4} B.{2,3,4} C.{0,2,4} D.{0,2,3,4}7.已知的內(nèi)角的對邊分別為,若,則()A. B. C. D.8.已知,則的值為()A. B.1 C. D.9.直線上的點到圓上點的最近距離為()A. B. C. D.110.在中,角,,所對的邊分別為,,,若,則最大角的余弦值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知直線與相互垂直,且垂足為,則的值為______.12.已知正實數(shù)x,y滿足2x+y=2,則xy的最大值為______.13.若,則____________.14.已知sin+cosα=,則sin2α=__15.?dāng)?shù)列中,若,,則______;16.己知為數(shù)列的前項和,且,則_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在四棱錐中,丄平面,,,,,.(1)證明丄;(2)求二面角的正弦值;(3)設(shè)為棱上的點,滿足異面直線與所成的角為,求的長.18.正四面體是側(cè)棱與底面邊長都相等的正三棱錐,它的對棱互相垂直.有一個如圖所示的正四面體,E,F(xiàn),G分別是棱AB,BC,CD的中點.(1)求證:面EFG;(2)求異面直線EG與AC所成角的大小.19.研究正弦函數(shù)的性質(zhì)(1)寫出其單調(diào)增區(qū)間的表達(dá)式(2)利用五點法,畫出的大致圖像(3)用反證法證明的最小正周期是20.在等差數(shù)列中,,且前7項和.(1)求數(shù)列的通項公式;(2)令,求數(shù)列的前項和.21.已知向量,滿足:=4,=3,(Ⅰ)求·的值;(Ⅱ)求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】分析:先求出A,B兩點坐標(biāo)得到再計算圓心到直線距離,得到點P到直線距離范圍,由面積公式計算即可詳解:直線分別與軸,軸交于,兩點,則點P在圓上圓心為(2,0),則圓心到直線距離故點P到直線的距離的范圍為則故答案選A.點睛:本題主要考查直線與圓,考查了點到直線的距離公式,三角形的面積公式,屬于中檔題.2、C【解題分析】

計算結(jié)果.【題目詳解】因為底面是邊長為2的正三角形,所以底面的面積為,則該三棱柱的體積為.【題目點撥】本題考查了棱柱的體積公式,屬于簡單題型.3、A【解題分析】

根據(jù)誘導(dǎo)公式化簡解析式,由正切函數(shù)的定義域求出此函數(shù)的定義域.【題目詳解】由題意得,y=tan(–2x)=–tan(2x–),由2x–(k∈Z)得,x≠+,k∈Z,所以函數(shù)的定義域是{x|x≠+,k∈Z},故選:A.【題目點撥】本題考查正切函數(shù)的定義域,以及誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.4、C【解題分析】

利用“1”的代換結(jié)合基本不等式求最值即可【題目詳解】∵兩個正數(shù)a,b滿足即a+3b=1則=當(dāng)且僅當(dāng)時取等號.故選C【題目點撥】本題考查了基本不等式求最值,巧用“1”的代換是關(guān)鍵,屬于基礎(chǔ)題.5、B【解題分析】試題分析:A.方向上的投影為,即,所以A正確;B.,所以B錯誤;C.,所以,所以C正確;D.,所以.D正確.考點:向量的數(shù)量積;向量的投影;向量的夾角.點評:熟練掌握數(shù)量積的有關(guān)性質(zhì)是解決此題的關(guān)鍵,尤其要注意“向量的平方就等于其模的平方”這條性質(zhì).6、C【解題分析】

先根據(jù)全集U求出集合A的補(bǔ)集,再求與集合B的并集.【題目詳解】由題得,故選C.【題目點撥】本題考查集合的運算,屬于基礎(chǔ)題.7、B【解題分析】

已知兩角及一對邊,求另一邊,我們只需利用正弦定理.【題目詳解】在三角形中由正弦定理公式:,所以選擇B【題目點撥】本題直接屬于正弦定理的直接考查,代入公式就能求解.屬于簡單題.8、B【解題分析】

化為齊次分式,分子分母同除以,化弦為切,即可求解.【題目詳解】.故選:B.【題目點撥】本題考查已知三角函數(shù)值求值,通過齊次分式化弦為切,屬于基礎(chǔ)題.9、C【解題分析】

求出圓心和半徑,求圓心到直線的距離,此距離減去半徑即得所求的結(jié)果.【題目詳解】將圓化為標(biāo)準(zhǔn)形式可得可得圓心為,半徑,而圓心到直線距離為,

因此圓上點到直線的最短距離為,故選:C.【題目點撥】本題考查直線和圓的位置關(guān)系,點到直線的距離公式的應(yīng)用,求圓心到直線的距離是解題的關(guān)鍵,屬于中檔題.10、D【解題分析】

設(shè),由余弦定理可求出.【題目詳解】設(shè),所以最大的角為,故選D.【題目點撥】本題主要考查了余弦定理,大邊對大角,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

先由兩直線垂直,可求出的值,將垂足點代入直線的方程可求出的點,再將垂足點代入直線的方程可求出的值,由此可計算出的值.【題目詳解】,,解得,直線的方程為,即,由于點在直線上,,解得,將點的坐標(biāo)代入直線的方程得,解得,因此,.故答案為:.【題目點撥】本題考查了由兩直線垂直求參數(shù),以及由兩直線的公共點求參數(shù),考查推理能力與計算能力,屬于基礎(chǔ)題.12、【解題分析】

由基本不等式可得,可求出xy的最大值.【題目詳解】因為,所以,故,當(dāng)且僅當(dāng)時,取等號.故答案為.【題目點撥】利用基本不等式求最值必須具備三個條件:①各項都是正數(shù);②和(或積)為定值;③等號取得的條件.13、【解題分析】故答案為.14、【解題分析】∵,∴即,則.故答案為:.15、【解題分析】

先分組求和得,再根據(jù)極限定義得結(jié)果.【題目詳解】因為,,……,,所以則.【題目點撥】本題考查分組求和法、等比數(shù)列求和、以及數(shù)列極限,考查基本求解能力.16、【解題分析】

根據(jù)可知,得到數(shù)列為等差數(shù)列;利用等差數(shù)列前項和公式構(gòu)造方程可求得;利用等差數(shù)列通項公式求得結(jié)果.【題目詳解】由得:,即:數(shù)列是公差為的等差數(shù)列又,解得:本題正確結(jié)果:【題目點撥】本題考查等差數(shù)列通項公式、前項和公式的應(yīng)用,關(guān)鍵是能夠利用判斷出數(shù)列為等差數(shù)列,進(jìn)而利用等差數(shù)列中的相關(guān)公式來進(jìn)行求解.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見證明;(2);(3)【解題分析】

(1)要證異面直線垂直,即證線面垂直,本題需證平面(2)作于點,連接.為二面角的平面角,在中解出即可.(3)過點作的平行線與線段相交,交點為,連接,;計算出AF、BF,再在中利用的余弦公式,解出EF,即可求出AE的長【題目詳解】(1)證明:由平面,可得,又由,,故平面.又平面,所以.(2)如圖,作于點,連接.由,,可得平面.因此,從而為二面角的平面角.在中,,,由此得由(1)知,故在中,因此所以二面角的正弦值為.(3)因為,故過點作的平行線必與線段相交,設(shè)交點為,連接,;∴或其補(bǔ)角為異面直線與所成的角;由于,故;在中,,;∴;∴在中,由,,可得:;由余弦定理,可得,,解得:,設(shè);在中,;在中,;∴在中,,∴;;解得;∴.【題目點撥】本題主要考查線線垂直、二面角的平面角、異面直線所成角的.屬于中檔題.18、(1)證明見解析;(2)【解題分析】

(1)連接EF,F(xiàn)G,GE,通過三角形的中位線可得,進(jìn)而可得面EFG;(2)由題可得為異面直線EG與AC所成角,根據(jù)正四棱錐的特點得到為等腰直角三角形,進(jìn)而可得結(jié)果.【題目詳解】解:(1)連接EF,F(xiàn)G,GE,如圖,E,F(xiàn)分別是棱AB,BC的中點,,又面EFG,面EFG,面EFG;(2)由(1),則為異面直線EG與AC所成角,AC與BD是正四面體的對棱,,又,,又,為等腰直角三角形,,即異面直線EG與AC所成角的大小為.【題目點撥】本題考查線面平行的證明,以及異面直線所成的角,通過直線平行找到異面直線所成角的平面角是關(guān)鍵,本題難度不大.19、(1)(2)見解析(3)見解析【解題分析】

(1)利用正弦函數(shù)的圖象和性質(zhì)即可得解;(2)利用五點法作函數(shù)的圖象即可;(3)先證明,再假設(shè)存在,使得,令,可得,令,可得,得到矛盾,即可得證.【題目詳解】(1)單調(diào)遞增區(qū)間為,所以單調(diào)遞增區(qū)間的表達(dá)式為(2)列表:描點,連線,可得函數(shù)圖象如下:(3)證明:,假設(shè)存在,使得,即,令,則,即;再令,可得,得到矛盾,綜上可知的最小正周期是.【題目點撥】本題主要考查了正弦函數(shù)的單調(diào)性,五點法作函數(shù)的圖象,考查了反證法的應(yīng)用,屬于中檔題.20、(1);(2)Sn=?3n+1+【解題分析】

(1)等差數(shù)列{an}的公差設(shè)為d,運用等差數(shù)列的通項公式和求和公式,計算可得所求通項公式;(2)求得bn=2n?3n,由數(shù)列的錯位相減法求和即可.【題目詳解】(1)等差數(shù)列{an}的公差設(shè)為d,a3=6,且前7項和T7=1.可得a1+2d=6,7a1+21d=1,解得a1=2,d=2,則an=2n;(2)bn=an?3n=2n?3n,前n項和Sn=2(1?3+2?32+3?33+…+n?3n),3Sn=2(1?32+2?33+3?34+…+n?3n+1),相減可得﹣2Sn=2(3+32+33+…+3n﹣n?3n+1)=2?(﹣n?3n+1),化簡可得Sn=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論