2024屆山東省棗莊市滕州市滕州市第一中學數(shù)學高一下期末聯(lián)考模擬試題含解析_第1頁
2024屆山東省棗莊市滕州市滕州市第一中學數(shù)學高一下期末聯(lián)考模擬試題含解析_第2頁
2024屆山東省棗莊市滕州市滕州市第一中學數(shù)學高一下期末聯(lián)考模擬試題含解析_第3頁
2024屆山東省棗莊市滕州市滕州市第一中學數(shù)學高一下期末聯(lián)考模擬試題含解析_第4頁
2024屆山東省棗莊市滕州市滕州市第一中學數(shù)學高一下期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆山東省棗莊市滕州市滕州市第一中學數(shù)學高一下期末聯(lián)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列函數(shù)中,在區(qū)間上單調遞增的是()A. B. C. D.2.下圖為某市國慶節(jié)7天假期的樓房認購量與成交量的折線圖,小明同學根據(jù)折線圖對這7天的認購量(單位:套)與成交量(單位:套)作出如下判斷:①日成交量的中位數(shù)是26;②日成交量超過日平均成交量的有2天;③認購量與日期正相關;④10月2日到10月6日認購量的分散程度比成交量的分散程度更大.則上述判斷錯誤的個數(shù)為()A.4 B.3 C.2 D.13.已知等比數(shù)列的首項,公比,則()A. B. C. D.4.如直線與平行但不重合,則的值為().A.或2 B.2 C. D.5.在中,角的對邊分別是,已知,則()A. B. C. D.或6.的值為()A. B. C. D.7.在中秋的促銷活動中,某商場對9月14日9時到14時的銷售額進行統(tǒng)計,其頻率分布直方圖如圖所示,已知12時到14時的銷售額為萬元,則10時到11時的銷售額為()A.萬元 B.萬元 C.萬元 D.萬元8.如圖,A,B是半徑為1的圓周上的定點,P為圓周上的動點,∠APB是銳角,大小為.圖中△PAB的面積的最大值為()A.+sin2 B.sin+sin2C.+sin D.+cos9.下列四個函數(shù)中,以為最小正周期,且在區(qū)間上為減函數(shù)的是()A. B. C. D.10.下列函數(shù)中,最小正周期為且圖象關于原點對稱的函數(shù)是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在三棱錐中,,,,作交于,則與平面所成角的正弦值是________.12.已知圓錐的底面半徑為3,體積是,則圓錐側面積等于___________.13.設為偶函數(shù),則實數(shù)的值為________.14.已知數(shù)列的前n項和,則數(shù)列的通項公式是______.15.在平面直角坐標系中,點,,若直線上存在點使得,則實數(shù)的取值范圍是_____.16.數(shù)列中,,,,則的前2018項和為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.某校高一年級有學生480名,對他們進行政治面貌和性別的調查,其結果如下:性別團員群眾男80女180(1)若隨機抽取一人,是團員的概率為,求,;(2)在團員學生中,按性別用分層抽樣的方法,抽取一個樣本容量為5的樣本,然后在這5名團員中任選2人,求兩人中至多有1個女生的概率.18.動直線m:3x+8y+3λx+λy+21=0(λ∈R)過定點M,直線l過點M且傾斜角α滿足cosα,數(shù)列{an}的前n項和為Sn,點P(Sn,an+1)在直線l上.(1)求數(shù)列{an}的通項公式an;(2)設bn,數(shù)列{bn}的前n項和Tn,如果對任意n∈N*,不等式成立,求整數(shù)k的最大值.19.平面四邊形中,.(1)若,求;(2)設,若,求面積的最大值.20.已知直線經(jīng)過兩條直線和的交點,且與直線垂直.(1)求直線的方程;(2)若圓的圓心為點,直線被該圓所截得的弦長為,求圓的標準方程.21.已知圓C過點,圓心在直線上.(1)求圓C的方程;(2)過圓O1:上任一點P作圓C的兩條切線,切點分別為Q,T,求四邊形PQCT面積的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】

判斷每個函數(shù)在上的單調性即可.【題目詳解】解:在上單調遞增,,和在上都是單調遞減.故選:A.【題目點撥】考查冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)和反比例函數(shù)的單調性.2、B【解題分析】

將國慶七天認購量和成交量從小到大排列,即可判斷①;計算成交量的平均值,可由成交量數(shù)據(jù)判斷②;由圖可判斷③;計算認購量的平均值與方差,成交量的平均值與方差,對方差比較即可判斷④.【題目詳解】國慶七天認購量從小到大依次為:91,100,105,107,112,223,276成交量從小到大依次為:8,13,16,26,32,38,166對于①,成交量的中為數(shù)為26,所以①正確;對于②,成交量的平均值為,有1天成交量超過平均值,所以②錯誤;對于③,由圖可知認購量與日期沒有正相關性,所以③錯誤;對于④,10月2日到10月6日認購量的平均值為方差為10月2日到10月6日成交量的平均值為方差為所以由方差性質可知,10月2日到10月6日認購量的分散程度比成交量的分散程度更小,所以④錯誤;綜上可知,錯誤的為②③④故選:B【題目點撥】本題考查了統(tǒng)計的基本內容,由圖示分析計算各個量,利用方差比較數(shù)據(jù)集中程度,屬于基礎題.3、B【解題分析】

由等比數(shù)列的通項公式可得出.【題目詳解】解:由已知得,故選:B.【題目點撥】本題考查等比數(shù)列的通項公式的應用,是基礎題.4、C【解題分析】

兩直線斜率相等,且截距不相等?!绢}目詳解】解析:由題意得,,解得或2,經(jīng)檢驗時兩直線重合,故.故選C.【題目點撥】本題考查兩直線平行,屬于基礎題.5、B【解題分析】

由已知知,所以B<A=,由正弦定理得,==,所以,故選B考點:正弦定理6、C【解題分析】試題分析:.考點:誘導公式.7、C【解題分析】分析:先根據(jù)12時到14時的銷售額為萬元求出總的銷售額,再求10時到11時的銷售額.詳解:設總的銷售額為x,則.10時到11時的銷售額的頻率為1-0.1-0.4-0.25-0.1=0.15.所以10時到11時的銷售額為.故答案為C.點睛:(1)本題主要考查頻率分布直方圖求概率、頻數(shù)和總數(shù),意在考查學生對這些基礎知識的掌握水平.(2)在頻率分布直方圖中,所有小矩形的面積和為1,頻率=.8、B【解題分析】

由正弦定理可得,,則,,當點在的中垂線上時,取得最大值,此時的面積最大,求解即可.【題目詳解】在中,由正弦定理可得,,則.,當點在的中垂線上時,取得最大值,此時的面積最大.取的中點,過點作的垂線,交圓于點,取圓心為,則(為銳角),.所以的面積最大為.故選B.【題目點撥】本題考查了三角形的面積的計算、正弦定理的應用,考查了三角函數(shù)的化簡,考查了計算能力,屬于基礎題.9、B【解題分析】

由條件利用三角函數(shù)的周期性和單調性,判斷各個選項是否正確,即可求得答案.【題目詳解】對于A,因為的周期為,故A錯誤;對于B,因為|以為最小正周期,且在區(qū)間上為減函數(shù),故B正確;對于C,因為的周期為,故C錯誤;對于D,因為區(qū)間上為增函數(shù),故D錯誤.故選:B.【題目點撥】本題主要考查了判斷三角函數(shù)的周期和在指定區(qū)間上的單調性,解題關鍵是掌握三角函數(shù)的基礎知識和函數(shù)圖象,考查了分析能力,屬于基礎題.10、A【解題分析】

求出函數(shù)的周期,函數(shù)的奇偶性,判斷求解即可.【題目詳解】解:y=cos(2x)=﹣sin2x,是奇函數(shù),函數(shù)的周期為:π,滿足題意,所以A正確y=sin(2x)=cos2x,函數(shù)是偶函數(shù),周期為:π,不滿足題意,所以B不正確;y=sin2x+cos2xsin(2x),函數(shù)是非奇非偶函數(shù),周期為π,所以C不正確;y=sinx+cosxsin(x),函數(shù)是非奇非偶函數(shù),周期為2π,所以D不正確;故選A.考點:三角函數(shù)的性質.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

取中點,中點,易得面,再求出到平面的距離,進而求解再得出到平面的距離.從而算得與平面所成角的正弦值即可.【題目詳解】如圖,取中點,中點,連接.因為,,所以.因為,,所以.在中,余弦定理可得.在中,余弦定理可得,故.在中,,且面.故到面的距離.到面的距離.又因為,所以,所以,所以,故到面的距離.故與平面所成角的正弦值是故答案為:【題目點撥】本題主要考查了空間中線面垂直的性質與運用,同時也考查了余弦定理在三角形中求線段與角度正余弦值的方法,需要根據(jù)題意找到點到面的距離求解,再求出線面的夾角.屬于難題.12、【解題分析】試題分析:求圓錐側面積必須先求圓錐母線,既然已知體積,那么可先求出圓錐的高,再利用圓錐的性質(圓錐的高,底面半徑,母線組成直角三角形)可得母線,,,,.考點:圓錐的體積與面積公式,圓錐的性質.13、4【解題分析】

根據(jù)偶函數(shù)的定義知,即可求解.【題目詳解】因為為偶函數(shù),所以,故,解得.故填4.【題目點撥】本題主要考查了偶函數(shù)的定義,利用定義求參數(shù)的取值,屬于中檔題.14、【解題分析】

時,,利用時,可得,最后驗證是否滿足上式,不滿足時候,要寫成分段函數(shù)的形式.【題目詳解】當時,,當時,=,又時,不適合,所以.【題目點撥】本題考查了由求,注意使用求時的條件是,所以求出后還要驗證適不適合,如果適合,要將兩種情況合成一種情況作答,如果不適合,要用分段函數(shù)的形式作答.屬于中檔題.15、.【解題分析】

設由,求出點軌跡方程,可判斷其軌跡為圓,點又在直線,轉化為直線與圓有公共點,只需圓心到直線的距離小于半徑,得到關于的不等式,求解,即可得出結論.【題目詳解】設,,,,整理得,又點在直線,直線與圓共公共點,圓心到直線的距離,即.故答案為:.【題目點撥】本題考查求曲線的軌跡方程,考查直線與圓的位置關系,屬于中檔題.16、2【解題分析】

直接利用遞推關系式和數(shù)列的周期求出結果即可.【題目詳解】數(shù)列{an}中,a1=1,a2=2,an+2=an+1﹣an,則:a2=a2﹣a1=1,a4=a2﹣a2=﹣1,a5=a4﹣a2=﹣2,a1=a5﹣a4=﹣1,a7=a1﹣a5=1,…所以:數(shù)列的周期為1.a(chǎn)1+a2+a2+a4+a5+a1=0,數(shù)列{an}的前2018項和為:(a1+a2+a2+a4+a5+a1)+…+(a2011+a2012+a2012+a2014+a2015+a2011)+a2017+a2018,=0+0+…+0+(a1+a2)=2.故答案為:2【題目點撥】本題考查的知識要點:數(shù)列的遞推關系式的應用,數(shù)列的周期的應用,主要考查學生的運算能力和轉化能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解題分析】

(1)隨機抽取一人,是團員的概率為,得,再由總人數(shù)為480得的另一個關系式,聯(lián)立求解,即可得出結論;(2)根據(jù)團員男女生人數(shù)的比例,可求出抽取一個樣本容量為5的樣本,男生為2人,女生為3人,將5人編號,列出從5人中抽取2人的所有基本事件,求出至多有1個女生的基本事件的個數(shù),按古典概型求概率,即可求解.【題目詳解】解:(1)由題意得:,解得,.(2)在團員學生中,按性別用分層抽樣的方法,抽取一個樣本容量為5的樣本,抽中男生:人,抽中女生:人,2名男生記為,3名女生記為,在這5名團員中任選2人,基本事件有:共有10個基本事件,兩人中至多有1個女生包含的基本事件個數(shù)有7個,∴兩人中至多有1個女生的概率.【題目點撥】本題考查分層抽樣抽取元素個數(shù)的分配,考查古典概型的概率,屬于基礎題.18、(1)an=6?(﹣1)n﹣1;(1)最大值為1.【解題分析】

(1)由直線恒過定點可得M(1,﹣3),求得直線l的方程,可得an+6=1Sn,運用數(shù)列的遞推式和等比數(shù)列的通項公式,可得所求;(1)bn?(﹣1)n﹣1,討論n為偶數(shù)或奇數(shù),可得Tn,再由不等式恒成立問題解法,可得所求k的范圍,可得最大值.【題目詳解】(1)3x+8y+3λx+λy+11=0即為(3x+8y+11)+λ(3x+y)=0,由3x+y=0且3x+8y+11=0,解得x=1,y=﹣3,可得M(1,﹣3),可得直線l的斜率為tanα1,即直線l的方程為y+3=1(x﹣1),即有y=1x﹣5,即有an+1=1Sn﹣5,即an+6=1Sn,當n=1時,可得a1+6=1S1=1a1,即a1=6,n≥1時,an﹣1+6=1Sn﹣1,又an+6=1Sn,相減可得1an=an﹣an﹣1,即an=﹣an﹣1,可得數(shù)列{an}的通項公式an=6?(﹣1)n﹣1;(1)bn,即bn?(﹣1)n﹣1,當n為偶數(shù)時,Tnn;當n為奇數(shù)時,Tnn,當n為偶數(shù)時,不等式成立,即為1n﹣7即k≤1n﹣1,可得k≤1;當n為奇數(shù)時,不等式成立,即為1n﹣7即4k≤6n﹣1,可得k,綜上可得k≤1,即k的最大值為1.【題目點撥】本題考查數(shù)列的遞推式的運用,直線方程的運用,數(shù)列的分組求和,以及不等式恒成立問題解法,考查化簡運算能力,屬于中檔題.19、(1);(2)【解題分析】

(1)法一:在中,利用余弦定理即可得到的長度;法二:在中,由正弦定理可求得,再利用正弦定理即可得到的長度;(2)在中,使用正弦定理可知是等邊三角形或直角三角形,分兩種情況分別找出面積表達式計算最大值即可.【題目詳解】(1)法一:中,由余弦定理得,即,解得或舍去,所以.法二:中,由正弦定理得,即.解得,故,.由正弦定理得,即,解得.(2)中,由正

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論