版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
重慶市云陽江口中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末考試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.橢圓以軸和軸為對稱軸,經(jīng)過點(2,0),長軸長是短軸長的2倍,則橢圓的方程為()A. B.C.或 D.或2.有3個興趣小組,甲、乙兩位同學(xué)各自參加其中一個小組,每位同學(xué)參加各個小組的可能性相同,則這兩位同學(xué)參加同一個興趣小組的概率為A. B. C. D.3.在△ABC中,D是邊BC的中點,則=A. B. C. D.4.若向量,,則()A. B. C. D.5.在中,已知角的對邊分別為,若,,,,且,則的最小角的正切值為()A. B. C. D.6.函數(shù)的圖象如圖所示,為了得到的圖象,可將的圖象()A.向右平移個單位 B.向右平移個單位C.向左平移個單位 D.向左平移個單位7.設(shè)為兩條不同的直線,為三個不重合平面,則下列結(jié)論正確的是()A.若,,則 B.若,則C.若,,則 D.若,,則8.已知等差數(shù)列的前項和為,若,則的值為A.10 B.15 C.25 D.309.漢朝時,張衡得出圓周率的平方除以16等于,如圖,網(wǎng)格紙上的小正方形的邊長為1,粗實線畫出的是某幾何體的三視圖,俯視圖中的曲線為圓,利用張衡的結(jié)論可得該幾何體的體積為()A.32 B.40 C. D.10.若過點,的直線與直線平行,則的值為()A.1 B.4 C.1或3 D.1或4二、填空題:本大題共6小題,每小題5分,共30分。11.在平面直角坐標(biāo)系xOy中,已知直角中,直角頂點A在直線上,頂點B,C在圓上,則點A橫坐標(biāo)的取值范圍是__________.12.若當(dāng)時,不等式恒成立,則實數(shù)a的取值范圍是_____.13.已知等差數(shù)列{an}的公差為d,且d≠0,其前n項和為Sn,若滿足a1,a2,a5成等比數(shù)列,且S3=9,則d=_____,Sn=_____.14.?dāng)?shù)列滿足:,,的前項和記為,若,則實數(shù)的取值范圍是________15.已知正四棱錐的底面邊長為,高為,則該四棱錐的側(cè)面積是______________16.設(shè)數(shù)列的前項和,若,,則的通項公式為_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知方程有兩個實根,記,求的值.18.在中,、、分別是內(nèi)角、、的對邊,且.(1)求角的大??;(2)若,的面積為,求的周長.19.在中,成等差數(shù)列,分別為的對邊,并且,,求.20.如圖,在四棱柱中,底面ABCD為菱形,平面ABCD,AC與BD交于點O,,,.(1)證明:平面平面;(2)求二面角的大小.21.在某單位的職工食堂中,食堂每天以3元/個的價格從面包店購進面包,然后以5元/個的價格出售.如果當(dāng)天賣不完,剩下的面包以1元/個的價格全部賣給飼料加工廠.根據(jù)以往統(tǒng)計資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進了80個面包,以x(單位:個,)表示面包的需求量,T(單位:元)表示利潤.(1)求食堂面包需求量的平均數(shù);(2)求T關(guān)于x的函數(shù)解析式;(3)根據(jù)直方圖估計利潤T不少于100元的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】
由于橢圓長軸長是短軸長的2倍,即,又橢圓經(jīng)過點(2,0),分類討論,即可求解.【題目詳解】由于橢圓長軸長是短軸長的2倍,即,又橢圓經(jīng)過點(2,0),則若焦點在x軸上,則,,橢圓方程為;若焦點在y軸上,則,,橢圓方程為,故選C.【題目點撥】本題主要考查了橢圓的方程的求解,其中解答中熟記橢圓的標(biāo)準(zhǔn)方程的形式,合理分類討論是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.2、A【解題分析】每個同學(xué)參加的情形都有3種,故兩個同學(xué)參加一組的情形有9種,而參加同一組的情形只有3種,所求的概率為p=選A3、C【解題分析】分析:利用平面向量的減法法則及共線向量的性質(zhì)求解即可.詳解:因為是的中點,所以,所以,故選C.點睛:本題主要考查共線向量的性質(zhì),平面向量的減法法則,屬于簡單題.4、B【解題分析】
根據(jù)向量的坐標(biāo)運算,先由,求得,再求的坐標(biāo).【題目詳解】因為,所以,所以.故選:B【題目點撥】本題主要考查了向量的坐標(biāo)運算,還考查了運算求解的能力,屬于基礎(chǔ)題.5、D【解題分析】
根據(jù)大角對大邊判斷最小角為,利用正弦定理得到,代入余弦定理計算得到,最后得到.【題目詳解】根據(jù)大角對大邊判斷最小角為根據(jù)正弦定理知:根據(jù)余弦定理:化簡得:故答案選D【題目點撥】本題考查了正弦定理,余弦定理,意在考查學(xué)生的計算能力.6、A【解題分析】
函數(shù)過代入解得,再通過平移得到的圖像.【題目詳解】,函數(shù)過向右平移個單位得到的圖象故答案選A【題目點撥】本題考查了三角函數(shù)圖形,求函數(shù)表達式,函數(shù)平移,意在考查學(xué)生對于三角函數(shù)圖形的理解.7、D【解題分析】
根據(jù)空間中線線、線面、面面位置關(guān)系,逐項判斷,即可得出結(jié)果.【題目詳解】A選項,若,,則可能平行、相交或異面;故A錯;B選項,若,,則或,故B錯;C選項,若,,因為為三個不重合平面,所以或,故C錯;D選項,若,,則,故D正確;故選D【題目點撥】本主要考查命題真假的判定,熟記空間中線線、線面、面面位置關(guān)系,即可得出結(jié)果.8、B【解題分析】
直接利用等差數(shù)列的性質(zhì)求出結(jié)果.【題目詳解】等差數(shù)列{an}的前n項和為Sn,若S17=85,則:85,解得:a9=5,所以:a7+a9+a11=3a9=1.故選:B.【題目點撥】本題考查的知識要點:等差數(shù)列的通項公式的應(yīng)用,及性質(zhì)的應(yīng)用,主要考查學(xué)生的運算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題.9、C【解題分析】
將三視圖還原,即可求組合體體積【題目詳解】將三視圖還原成如圖幾何體:半個圓柱和半個圓錐的組合體,底面半徑為2,高為4,則體積為,利用張衡的結(jié)論可得故選C【題目點撥】本題考查三視圖,正確還原,熟記圓柱圓錐的體積是關(guān)鍵,是基礎(chǔ)題10、A【解題分析】
首先設(shè)一條與已知直線平行的直線,點,代入直線方程即可求出的值.【題目詳解】設(shè)與直線平行的直線:,點,代入直線方程,有.故選:A.【題目點撥】本題考查了利用直線的平行關(guān)系求參數(shù),屬于基礎(chǔ)題.注意直線與直線在時相互平行.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
由題意畫出圖形,寫出以原點為圓心,以為半徑的圓的方程,與直線方程聯(lián)立求得值,則答案可求.【題目詳解】如圖所示,當(dāng)點往直線兩邊運動時,不斷變小,當(dāng)點為直線上的定點時,直線與圓相切時,最大,∴當(dāng)為正方形,則,則以為圓心,以為半徑的圓的方程為.聯(lián)立,得.解得或.點橫坐標(biāo)的取值范圍是.故答案為:.【題目點撥】本題考查直線與圓位置關(guān)系的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意坐標(biāo)法的應(yīng)用.12、【解題分析】
用換元法把不等式轉(zhuǎn)化為二次不等式.然后用分離參數(shù)法轉(zhuǎn)化為求函數(shù)最值.【題目詳解】設(shè),是增函數(shù),當(dāng)時,,不等式化為,即,不等式在上恒成立,時,顯然成立,,對上恒成立,由對勾函數(shù)性質(zhì)知在是減函數(shù),時,,∴,即.綜上,.故答案為:.【題目點撥】本題考查不等式恒成立問題,解題方法是轉(zhuǎn)化與化歸,首先用換元法化指數(shù)型不等式為一元二次不等式,再用分離參數(shù)法轉(zhuǎn)化為求函數(shù)最值.13、2n2.【解題分析】
由已知列關(guān)于首項與公差的方程組,求解可得首項與公差,再由等差數(shù)列的前項和求解.【題目詳解】由題意,有,即,解得,所以.故答案為:,.【題目點撥】本題考查等差數(shù)列的通項公式與前項和,考查等比數(shù)列的性質(zhì),屬于基礎(chǔ)題.14、【解題分析】
因為數(shù)列有極限,故考慮的情況.又?jǐn)?shù)列分兩組,故分組求和求極限即可.【題目詳解】因為,故,且,故,又,即.綜上有.故答案為:【題目點撥】本題主要考查了數(shù)列求和的極限,需要根據(jù)題意分組求得等比數(shù)列的極限,再利用不等式找出參數(shù)的關(guān)系,屬于中等題型.15、【解題分析】四棱錐的側(cè)面積是16、【解題分析】
已知求,通常分進行求解即可?!绢}目詳解】時,,化為:.時,,解得.不滿足上式.∴數(shù)列在時成等比數(shù)列.∴時,.∴.故答案為:.【題目點撥】本題主要考查了數(shù)列通項式的求法:求數(shù)列通項式常用的方法有累加法、定義法、配湊法、累乘法等。三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、【解題分析】
求出的值和的范圍即可【題目詳解】因為,所以又有兩個實根所以所以因為所以,所以所以所以故答案為:【題目點撥】1.要清楚反三角函數(shù)的定義域和值域,如的定義域為,值域為2.由三角函數(shù)的值求角時一定要判斷出角的范圍.18、(1)(2)【解題分析】
(1)由正弦定理,兩角和的正弦函數(shù)公式化簡已知等式可得,由,可求,結(jié)合范圍,可求.(2)利用三角形的面積公式可求,進而根據(jù)余弦定理可得,即可計算得解的周長的值.【題目詳解】解:(1)∵,∴由正弦定理可得:,即,∵,∴,∵,∴.(2)∵,,的面積為,,∴,∴由余弦定理可得:,∴解得:,∴的周長.【題目點撥】本題主要考查了正弦定理,兩角和的正弦函數(shù)公式,三角形的面積公式,余弦定理在解三角形中的綜合應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.19、或.【解題分析】
先算出,從而得到,也就是,結(jié)合面積得到,再根據(jù)余弦定理可得,故可解得的大小.【題目詳解】∵成等差數(shù)列,∴,又,∴,∴.所以,所以,①又,∴.②由①②,得,,而由余弦定理可知∴即.③聯(lián)立③與②解得或,綜上,或.【題目點撥】三角形中共有七個幾何量(三邊三角以及外接圓的半徑),一般地,知道其中的三個量(除三個角外),可以求得其余的四個量.(1)如果知道三邊或兩邊及其夾角,用余弦定理;(2)如果知道兩邊即一邊所對的角,用正弦定理(也可以用余弦定理求第三條邊);(3)如果知道兩角及一邊,用正弦定理.20、(1)證明見解析;(2)﹒【解題分析】
(1)證面面垂直只需證一個平面內(nèi)有一條直線和另一個平面垂直(2)通過作圖需找二面角的平面角即可【題目詳解】(1)證明:由平面ABCD,有;由四邊形ABCD為菱形,所以AC⊥BD:又因為,所以平面,因為平面,所以平面平面,(2)過O作于E,連結(jié)BE,由(1)知平面,所以,又因為,,所以平面BDE,從而;由,,所以∠OEB為二面角的平面角.由為等邊三角形且O為BD中點,有,,,由,有,由,有,從而.在中,,所以,即.綜上,二面角的大小為﹒【題目點撥】面面垂直可通過線面垂直進行證明,二面角的平面角有正有負(fù),解題時要注意結(jié)合題設(shè)關(guān)系進行正確判斷21、(1)84;(2);(3)【解題分析】
(1)每個小矩形的面積乘以該組中間值,所得數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代家居裝飾風(fēng)格與心理健康關(guān)系探討
- 構(gòu)建以服務(wù)功能為導(dǎo)向的綠色生態(tài)環(huán)境教育體系
- 生物醫(yī)藥與健康產(chǎn)業(yè)的投資潛力研究
- 現(xiàn)代化技術(shù)與醫(yī)療中心的高層建筑設(shè)計思考
- 生態(tài)城市建設(shè)中環(huán)境科學(xué)的應(yīng)用研究
- Unit 5 We're family Period 3 (說課稿)-2024-2025學(xué)年外研版(三起)(2024)英語三年級上冊
- 2024-2025學(xué)年高中生物 第四部分 淺嘗現(xiàn)代生物技術(shù)說課稿 浙科版選修1
- 2024-2025學(xué)年高中物理 第四章 電磁感應(yīng) 5 電磁感應(yīng)現(xiàn)象的兩類情況(1)說課稿 新人教版選修3-2
- 9古代科技 耀我中華-獨領(lǐng)風(fēng)騷的古代技術(shù)創(chuàng)造(說課稿)2023-2024學(xué)年統(tǒng)編版道德與法治五年級上冊
- 26 手術(shù)臺就是陣地 說課稿-2024-2025學(xué)年統(tǒng)編版語文三年級上冊001
- 授信審批部工作計劃及思路
- 財務(wù)管理學(xué)(第10版)課件 第3章 財務(wù)分析
- 地鐵前期工程交通疏解施工方案
- 小學(xué)語文大單元教學(xué)設(shè)計與實施
- 小學(xué)升初中六年級數(shù)學(xué)考試試卷含答案(達標(biāo)題)
- 2024年長沙航空職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫完整
- 腫瘤微環(huán)境在癌癥進展中的作用研究
- 上海市發(fā)展改革研究院工作人員招考聘用12人公開引進高層次人才和急需緊缺人才筆試參考題庫(共500題)答案詳解版
- 2024年上海市各區(qū)高三語文二模試卷【文言文閱讀題】匯集練附答案解析
- 家禽消化系統(tǒng)認(rèn)知
- 元宇宙技術(shù)與應(yīng)用智慧樹知到期末考試答案章節(jié)答案2024年中國科學(xué)技術(shù)大學(xué)
評論
0/150
提交評論