![河北邢臺一中2024屆高一數(shù)學第二學期期末達標測試試題含解析_第1頁](http://file4.renrendoc.com/view11/M01/27/33/wKhkGWWhiX6AZY_LAAHOq4ygp_0873.jpg)
![河北邢臺一中2024屆高一數(shù)學第二學期期末達標測試試題含解析_第2頁](http://file4.renrendoc.com/view11/M01/27/33/wKhkGWWhiX6AZY_LAAHOq4ygp_08732.jpg)
![河北邢臺一中2024屆高一數(shù)學第二學期期末達標測試試題含解析_第3頁](http://file4.renrendoc.com/view11/M01/27/33/wKhkGWWhiX6AZY_LAAHOq4ygp_08733.jpg)
![河北邢臺一中2024屆高一數(shù)學第二學期期末達標測試試題含解析_第4頁](http://file4.renrendoc.com/view11/M01/27/33/wKhkGWWhiX6AZY_LAAHOq4ygp_08734.jpg)
![河北邢臺一中2024屆高一數(shù)學第二學期期末達標測試試題含解析_第5頁](http://file4.renrendoc.com/view11/M01/27/33/wKhkGWWhiX6AZY_LAAHOq4ygp_08735.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河北邢臺一中2024屆高一數(shù)學第二學期期末達標測試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知在中,內(nèi)角的對邊分別為,若,則等于()A. B. C. D.2.已知集合,對于滿足集合A的所有實數(shù)t,使不等式恒成立的x的取值范圍為A. B.C. D.3.已知,若關(guān)于x的不等式的解集為,則()A. B. C.1 D.74.過正方形的頂點,作平面,若,則平面和平面所成的銳二面角的大小是A. B.C. D.5.若三棱錐的所有頂點都在球的球面上,平面,,,且三棱錐的體積為,則球的體積為()A. B. C. D.6.矩形中,,若在該矩形內(nèi)隨機投一點,那么使得的面積不大于3的概率是()A. B. C. D.7.下列表達式正確的是()①,②若,則③若,則④若,則A.①② B.②③ C.①③ D.③④8.把黑、紅、白3張紙牌分給甲、乙、丙三人,則事件“甲分得紅牌”與“乙分得紅牌”是()A.對立事件B.互斥但不對立事件C.不可能事件D.必然事件9.在棱長為2的正方體中,是內(nèi)(不含邊界)的一個動點,若,則線段的長的取值范圍為()A. B. C. D.10.已知實數(shù)滿足且,則下列關(guān)系中一定正確的是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知三個事件A,B,C兩兩互斥且,則P(A∪B∪C)=__________.12.數(shù)列滿足:(且為常數(shù)),,當時,則數(shù)列的前項的和為________.13.函數(shù),的值域是_____.14.(如下圖)在正方形中,為邊中點,若,則__________.15.給出以下四個結(jié)論:①過點,在兩軸上的截距相等的直線方程是;②若是等差數(shù)列的前n項和,則;③在中,若,則是等腰三角形;④已知,,且,則的最大值是2.其中正確的結(jié)論是________(寫出所有正確結(jié)論的番號).16.已知等比數(shù)列{an}的前n項和為Sn,若S3=7,S6=63,則an=_____三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列an滿足an+1=2an(1)求證:數(shù)列bn(2)求數(shù)列an的前n項和為S18.在△ABC中,內(nèi)角A、B、C所對的邊分別為a、b、c,,.(1)若,求△ABC的周長;(2)若CD為AB邊上的中線,且,求△ABC的面積.19.如圖,三棱柱,底面,且為正三角形,,,為中點.(1)求證:直線平面;(2)求二面角的大小.20.在城市舊城改造中,某小區(qū)為了升級居住環(huán)境,擬在小區(qū)的閑置地中規(guī)劃一個面積為的矩形區(qū)域(如圖所示),按規(guī)劃要求:在矩形內(nèi)的四周安排寬的綠化,綠化造價為200元/,中間區(qū)域地面硬化以方便后期放置各類健身器材,硬化造價為100元/.設(shè)矩形的長為.(1)設(shè)總造價(元)表示為長度的函數(shù);(2)當取何值時,總造價最低,并求出最低總造價.21.在四棱錐中,,.(1)若點為的中點,求證:平面;(2)當平面平面時,求二面角的余弦值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】
由題意變形,運用余弦定理,可得cosB,再由同角的平方關(guān)系,可得所求值.【題目詳解】2b2﹣2a2=ac+2c2,可得a2+c2﹣b2ac,則cosB,可得B<π,即有sinB.故選A.【題目點撥】本題考查余弦定理的運用,考查同角的平方關(guān)系,以及運算能力,屬于中檔題.2、B【解題分析】
由條件求出t的范圍,不等式變形為恒成立,即不等式恒成立,再由不等式的左邊兩個因式同為正或同為負處理.【題目詳解】由得,,
不等式恒成立,即不等式恒成立,即不等式恒成立,
只需或恒成立,
只需或恒成立,
只需或即可.
故選:B.【題目點撥】本題考查了一元二次不等式的解法問題,難度較大,充分利用恒成立的思想解題是關(guān)鍵.3、B【解題分析】
由韋達定理列方程求出,即可得解.【題目詳解】由已知及韋達定理可得,,,即,,所以.故選:.【題目點撥】本題考查一元二次方程和一元二次不等式的關(guān)系、韋達定理的應(yīng)用等,屬于一般基礎(chǔ)題.4、B【解題分析】法一:建立如圖(1)所示的空間直角坐標系,不難求出平面APB與平面PCD的法向量分別為n1=(0,1,0),n2=(0,1,1),故平面ABP與平面CDP所成二面角的余弦值為=,故所求的二面角的大小是45°.法二:將其補成正方體.如圖(2),不難發(fā)現(xiàn)平面ABP和平面CDP所成的二面角就是平面ABQP和平面CDPQ所成的二面角,其大小為45°.5、A【解題分析】
由的體積計算得高,已知將三棱錐的外接球,轉(zhuǎn)化為長2,寬2,高的長方體的外接球,求出半徑,可得答案.【題目詳解】∵,,故三棱錐的底面面積為,由平面,得,又三棱錐的體積為,得,所以三棱錐的外接球,相當于長2,寬2,高的長方體的外接球,故球半徑,得,故外接球的體積.故選:A.【題目點撥】本題考查了三棱錐外接球的體積,三棱錐體積公式的應(yīng)用,根據(jù)已知計算出球的半徑是解答的關(guān)鍵,屬于中檔題.6、C【解題分析】
先求出的點的軌跡(一條直線),然后由面積公式可知時點所在區(qū)域,計算其面積,利用幾何概型概率公式計算概率.【題目詳解】設(shè)到的距離為,,則,如圖,設(shè),則點在矩形內(nèi),,,∴所求概率為.故選C.【題目點撥】本題考查幾何概型概率.解題關(guān)鍵是確定符合條件點所在區(qū)域及其面積.7、D【解題分析】
根據(jù)基本不等式、不等式的性質(zhì)即可【題目詳解】對于①,.當,即時取,而,.即①不成立。對于②若,則,若,顯然不成立。對于③若,則,則正確。對于④若,則,則,正確。所以選擇D【題目點撥】本題主要考查了基本不等式以及不等式的性質(zhì),基本不等式一定要滿足一正二定三相等。屬于中等題。8、B【解題分析】試題分析:把黑、紅、白3張紙牌分給甲、乙、丙三人,事件“甲分得紅牌”與“乙分得紅牌”不可能同時發(fā)生,是互斥事件,但除了事件“甲分得紅牌”與“乙分得紅牌”還有“丙分得紅牌”,所以這兩者不是對立事件,答案為B.考點:互斥與對立事件.9、C【解題分析】
先判斷是正四面體,可得正四面體的棱長為,則的最大值為的長,的最小值是到平面的距離,結(jié)合不在三角形的邊上,計算可得結(jié)果.【題目詳解】由正方體的性質(zhì)可知,是正四面體,且正四面體的棱長為,在內(nèi),的最大值為,的最小值是到平面的距離,設(shè)在平面的射影為,則為正三角形的中心,,,的最小值為,又因為不在三角形的邊上,所以的范圍是,故選C.【題目點撥】本題主要考查正方體的性質(zhì)及立體幾何求最值,屬于難題.解決圓錐曲線中的最值問題一般有兩種方法:一是幾何意義以及平面幾何的有關(guān)結(jié)論來解決,非常巧妙;二是將立體幾何中最值問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法求解.10、D【解題分析】
由已知得,然后根據(jù)不等式的性質(zhì)判斷.【題目詳解】由且,,由得,A錯;由得,B錯;由于可能為0,C錯;由已知得,則,D正確.故選:D.【題目點撥】本題考查不等式的性質(zhì),掌握不等式性質(zhì)是解題關(guān)鍵,特別是性質(zhì):不等式兩同乘以一個正數(shù),不等號方向不變,不等式兩邊同乘以一個負數(shù),不等號方向改變.二、填空題:本大題共6小題,每小題5分,共30分。11、0.9【解題分析】
先計算,再計算【題目詳解】故答案為0.9【題目點撥】本題考查了互斥事件的概率計算,屬于基礎(chǔ)題型.12、【解題分析】
直接利用分組法和分類討論思想求出數(shù)列的和.【題目詳解】數(shù)列滿足:(且為常數(shù)),,當時,則,所以(常數(shù)),故,所以數(shù)列的前項為首項為,公差為的等差數(shù)列.從項開始,由于,所以奇數(shù)項為、偶數(shù)項為,所以,故答案為:【題目點撥】本題考查了由遞推關(guān)系式求數(shù)列的性質(zhì)、等差數(shù)列的前項和公式,需熟記公式,同時也考查了分類討論的思想,屬于中檔題.13、【解題分析】
首先根據(jù)的范圍求出的范圍,從而求出值域?!绢}目詳解】當時,,由于反余弦函數(shù)是定義域上的減函數(shù),且所以值域為故答案為:.【題目點撥】本題主要考查了復(fù)合函數(shù)值域的求法:首先求出內(nèi)函數(shù)的值域再求外函數(shù)的值域。屬于基礎(chǔ)題。14、【解題分析】∵,根據(jù)向量加法的三角形法則,得到∴λ=1,.則λ+μ=.故答案為.點睛:此題考查的是向量的基本定理及其分解,由條件知道,題目中要用和,來表示未知向量,故題目中要通過正方形的邊長和它特殊的直角,來做基底,表示出要求的向量,根據(jù)平面向量基本定理,系數(shù)具有惟一性,得到結(jié)果.15、②④【解題分析】
①中滿足題意的直線還有,②中根據(jù)等差數(shù)列前項和的特點,得到,③中根據(jù)同角三角函數(shù)關(guān)系進行化簡計算,從而進行判斷,④中根據(jù)基本不等式進行判斷.【題目詳解】①中過點,在兩軸上的截距相等的直線還可以過原點,即兩軸上的截距都為,即直線,所以錯誤;②中是等差數(shù)列的前n項和,根據(jù)等差數(shù)列前項和的特點,,是一個不含常數(shù)項的二次式,從而得到,即,所以正確;③中在中,若,則可得,所以可得或,所以可得或,從而得到為直角三角形或等腰三角形,所以錯誤;④中因為,,且,由基本不等式,得到,所以,當且僅當,即時,等號成立.所以,即的最大值是,所以正確.故答案為:②④【題目點撥】本題考查截距相等的直線的特點,等差數(shù)列前項和的特點,判斷三角形形狀,基本不等式求積的最大值,屬于中檔題.16、【解題分析】
利用等比數(shù)列的前n項和公式列出方程組,求出首項與公比,由此能求出該數(shù)列的通項公式.【題目詳解】由題意,,不合題意舍去;當?shù)缺葦?shù)列的前n項和為,即,解得,所以,故答案為:.【題目點撥】本題主要考查了等比數(shù)列的通項公式的求法,考查等比數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)S【解題分析】
(1)計算得到bn+1bn(2)根據(jù)(1)知an【題目詳解】(1)因為bn+1b所以數(shù)列bn(2)因為bn=aSn【題目點撥】本題考查了等比數(shù)列的證明,分組求和,意在考查學生的計算能力和對于數(shù)列方法的靈活運用.18、(1)(2)【解題分析】
(1)由正弦定理可得,再結(jié)合余弦定理可得,再求邊長即可得解;(2)由余弦定理可得,再利用三角形面積公式求解即可.【題目詳解】解:(1)因為,所以,即,即,即,即,又,則,則,又,則,即,即△ABC的周長為;(2)因為,,在中,由余弦定理可得:,則,即,即,所以.【題目點撥】本題考查了正弦定理及余弦定理的應(yīng)用,重點考查了三角形的面積公式,屬中檔題.19、(1)證明見解析;(2).【解題分析】
(1)連交于,連,則點為中點,為中點,得,即可證明結(jié)論;(1)為正三角形,為中點,可得,再由底面,得底面,得,可證平面,有,為的平面角,解,即可求出結(jié)論.【題目詳解】(1)連交于,連,三棱柱,側(cè)面為平行四邊形,所以點為中點,為中點,所以,因為平面,平面,所以直線平面;(2)為正三角形,為中點,可得,三棱柱,所以,底面,所以底面,底面,所以,又平面,所以平面,平面,所以,為的平面角,在中,,,所以,所以二面角的大小為.【題目點撥】本題考查線面平行的證明,用幾何法求二面角的平面角,做出二面角的平面角是解題的關(guān)鍵,屬于中檔題.20、(1),(2)當時,總造價最低為元【解題分析】
(1)根據(jù)題意得矩形的長為,則矩形的寬為,中間區(qū)域的長為,寬為列出函數(shù)即可.(2)根據(jù)(1)的結(jié)果利用基本不等式即可.【題目詳解】(1)由矩形的長為,則矩形的寬為,則中間區(qū)域的長為,寬為,則定義域為則整理得,(2)當且僅當時取等號,即所以當時,總造價最低為元【題目點撥】本題主要考查了函數(shù)的表示方法,以及基本不等式的應(yīng)用.在利用基本不等式時保證一正二定三相等,屬于中等題.21、(1)見解析;(2).【解題分析】
(I)結(jié)合平面與平面平行判定,得到平面BEM平行平面PAD,結(jié)合平面與平面性質(zhì),證明結(jié)論.(II)建立空間坐標系,分別計算平面PCD和平面PDB的法向量,結(jié)合向量數(shù)量積公式,計算余弦值,即可.【題目詳解】(Ⅰ)取的中點為,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年產(chǎn)品特許經(jīng)營合同常用版(4篇)
- 2025年二手房東房屋租賃合同標準版本(4篇)
- 2025年買賣房產(chǎn)合同標準版本(2篇)
- 2025年個人房屋租賃合同協(xié)議參考樣本(三篇)
- 2025年臨時勞動協(xié)議標準范文(2篇)
- 2025年企業(yè)勞動員工勞動合同模板(2篇)
- 2025年產(chǎn)學研合作三方協(xié)議范文(2篇)
- 2025年二手房購買合同標準樣本(2篇)
- 2025年企業(yè)單位勞動用工合同模板(2篇)
- 2025年中介商鋪租賃合同格式版(2篇)
- 2025高考語文復(fù)習之60篇古詩文原文+翻譯+賞析+情景默寫
- 成長型思維課件
- 高中學生宿舍樓建設(shè)項目可行性研究報告
- 2024-2025學年物理人教版八年級上冊-6.4-密度的應(yīng)用-課件
- 礦山應(yīng)急管理培訓
- 維吾爾醫(yī)優(yōu)勢病種
- DB41T 2486-2023 叉車維護保養(yǎng)與自行檢查規(guī)范
- 全國教學設(shè)計大賽一等獎英語七年級上冊(人教2024年新編)《Unit 2 Were Family!》單元教學設(shè)計
- 三相四線及三相三線錯誤接線向量圖分析及更正
- 白酒業(yè)務(wù)員考勤管理制度
- 【獨家揭秘】2024年企業(yè)微信年費全解析:9大行業(yè)收費標準一覽
評論
0/150
提交評論