版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
保障靈活調節(jié)資源充裕性的容量市場機制西安交通大學電氣工程學院肖云鵬2023年9月標題目錄CONTENTS01容量市場的作用及問題P
A
R
T保障靈活調節(jié)資源充裕性的容量市場出清模型保障靈活調節(jié)資源充裕性的容量市場定價與結算機制保障靈活調節(jié)資源充裕性的容量市場仿真測算結論與展望2/30Part1
作用與問題ü
容量市場的建設意義?
容量市場的主要目的是保障系統(tǒng)充裕度。首要目標是確保電力系統(tǒng)擁有足夠的發(fā)電能力來滿足電力需求,在高峰期或突發(fā)情況下保障系統(tǒng)安全運行。電力市場特征容量市場建設意義?
新型電力系統(tǒng)不確定性極強可靠性容量保障可再生能源波動性、高峰期電力需求或突發(fā)情況威脅系統(tǒng)供電可靠性?
火電機組投資成本回收困難火電固定成本回收利用小時數(shù)較低的傳統(tǒng)機組無法在電能量市場中獲得持久穩(wěn)定的收益?
市場多樣性創(chuàng)造長期價格信號引導資源投資市場主體增多,電源/負荷結構變化較快,導致多樣化的能源需求?
競爭性定價提供更穩(wěn)定的定價機制電價由市場供需關系決定,系統(tǒng)容量不足時電價高漲,用戶用電成本大大提高3/30Part1
作用與問題ü
PJM容量市場的發(fā)展l
容量市場發(fā)展歷程PJM容量市場建立改革前199920072015容量義務分配模式容量信用市場模式(CCM)可靠性定價市場模式(RPM)容量表現(xiàn)市場階段?
LSE承擔容量責任?
LSE通過場內集中、自供給、?
LSE通過PJM從拍賣市場分配雙邊協(xié)商方式實現(xiàn)對原有容量市場資源做了進一步改善?
LSE承擔容量責任?
LSE通過自供給或雙邊協(xié)商方式實現(xiàn)?
PJM通過拍賣市場購買后分配或自供給、雙邊協(xié)商方式實現(xiàn)基本容量Base容量表現(xiàn)CP4/30Part1
作用與問題ü
PJM容量市場的發(fā)展l
RPM市場架構供給側資源出售容量購買容量P
JM拍賣市場發(fā)電資源容量購買費用分攤需求側資源能效資源基礎拍賣(BRA)追加拍賣(IA)負荷供應商LSE1負荷供應商LSE2負荷供應商LSE3在BRA中申報自供給聚合資源規(guī)劃中的資源輸電升級項目雙邊合同雙邊合同雙邊交易……5/30Part1
作用與問題ü
PJM容量市場的發(fā)展三年l
RPM市場交易時序20個月10個月3個月持續(xù)開展的雙邊市場PJM市場交易時序次年六月五月九月七月二月六月容量交付年第一次追加拍賣第二次追加拍賣第三次追加拍賣基本拍賣市場采購LDA的額外容量,以解決由骨干傳輸線延遲引起的可靠性問題條件追加拍賣6/30Part1
作用與問題對于存在區(qū)域輸電約束的地區(qū),每個區(qū)域(LDA)可以有單獨的需求曲線。ü
PJM容量市場的發(fā)展l
RPM模式需求曲線制定——可變容量需求曲線(Variable
Resource
Requirement
,VRR)曲線取決于系統(tǒng)可靠性需求和新建機組的凈成本,對市場出清價格有重要影響。1.5
Net
Cone價格上限:聯(lián)合循環(huán)燃氣輪機新進入成本凈額的150%A(0.998IRM,
1.5
Net
Cone)需求曲線與價格上限的交叉點B(1.029IRM,
0.75
Net
Cone)C(1.088IRM,0)容量需求——根據(jù)資源充裕性目標設定,即峰值負荷加上所需的裝機備用裕度(IRM)0.75
Net
Cone根據(jù)十年一遇失負荷期望(LOLE)要求計算得出。IRM-0.2%
IRM
IRM+2.9%IRM+8.8%7/30Part1
作用與問題ü
PJM容量市場的發(fā)展需求l
RPM市場出清流程:基本拍賣市場中各LDA的VRR出清結果供給容量資源供給容量和報價求解優(yōu)化算法?
區(qū)域出清容量?
區(qū)域容量價格?
容量輸送權(CTR)價格約束區(qū)域限制約束出清容量約束8/30Part1
作用與問題ü
PJM容量市場的發(fā)展l
不同市場模式對比:容量信用市場(CCM模式)可靠性定價市場(RPM模式)提前1年的容量拍賣市場持續(xù)時間提前3年的前瞻性容量拍賣市場采用傾斜的容量需求曲線開展日前、月度和多月容量市場采用垂直的容量需求曲線需求曲線制定所有價格下的容量需求都固定在資源充裕性目標上,導致價格劇烈波動允許需求側資源、輸電升級項目、聚合資源、能效資源以及規(guī)劃中的資源參與市場競爭僅限在役發(fā)電機組供給側資源定價模式資源利用不充分全區(qū)域統(tǒng)一定價不考慮區(qū)域間傳輸約束區(qū)域內部受約束地區(qū)產生可靠性問題考慮傳輸約束的分區(qū)定價9/30Part1
作用與問題ü
當前容量市場存在的問題l
新型電力系統(tǒng)對充裕性需求多樣化。l
新能源、儲能等新興市場主體的有效容量評估困難。問題10/30PromotionalArticleaddedbytheECE,notincludedintheoriginalslidesEnergy
Conversion
and
EconomicsDOI:
10.1049/enc2.12050ORIGINAL
RESEARCH
PAPERDistributed
control
strategy
for
transactive
energy
prosumers
inreal-time
marketsChen
Yin1Ran
Ding2Haixiang
Xu2Gengyin
Li1Xiupeng
Chen3Ming
Zhou11
State
Key
Laboratory
of
Alternate
Electrical
PowerSystem
with
Renewable
Energy
Sources,
School
ofAbstractThe
increasing
penetration
of
distributed
energy
resources
(DERs)
has
led
to
increasingresearch
interest
in
the
cooperative
control
of
multi-prosumers
in
a
transactive
energy
(TE)paradigm.
While
the
existing
literature
shows
that
TE
offers
signi?cant
grid
?exibility
andeconomic
bene?ts,
few
studies
have
addressed
the
incorporation
of
security
constraints
inTE.
Herein,
a
market-based
control
mechanism
in
real-time
markets
is
proposed
to
eco-nomically
coordinate
the
TE
among
prosumers
while
ensuring
secure
system
operation.Considering
the
dynamic
characteristics
of
batteries
and
responsive
demands,
a
model
pre-dictive
control
(MPC)
method
is
used
to
handle
the
constraints
between
different
timeintervals
and
incorporate
the
following
generation
and
consumption
predictions.
Owing
tothe
computational
burden
and
individual
privacy
issues,
an
ef?cient
distributed
algorithmis
developed
to
solve
the
optimal
power
?ow
problem.
The
strong
coupling
between
pro-sumers
through
power
networks
is
removed
by
introducing
auxiliary
variables
to
acquirelocational
marginal
prices
(LMPs)
covering
energy,
congestion,
and
loss
components.
Casestudies
based
on
the
IEEE
33-bus
system
demonstrated
the
ef?ciency
and
effectiveness
ofthe
proposed
method
and
model.Electrical
and
Electronic
Engineering,
North
ChinaElectric
Power
University,
Beijing,
China2
State
Grid
Jibei
Electric
Power
Co.,
Ltd.,
Beijing,China3
Engineering
and
Technology
Institute
Groningen,University
of
Groningen,
Groningen,
TheNetherlands標題目錄CONTENTS01容量市場的作用及問題P
A
R
T02保障靈活調節(jié)資源充裕性的容量市場出清模型P
A
R
T保障靈活調節(jié)資源充裕性的容量市場定價與結算機制保障靈活調節(jié)資源充裕性的容量市場仿真測算結論與展望Part2出清模型ü
容量市場出清模型構建傳統(tǒng)容量市場只考慮保障負荷峰值時段系統(tǒng)充裕度,未來在高比例新能源接入的新型電力系統(tǒng)場景下,新能源的波動性和不確定性將對電力系統(tǒng)的調峰能力、靈活爬坡調節(jié)能力提出了更高的要求。根據(jù)各類型資源有效容量評估方法、系統(tǒng)容量充裕度評估方法、關鍵斷面約束辨識技術,構建充分考慮長期有效容量和煤電深調容量的容量市場出清模型。容量市場需求曲線資源供應曲線?
目前考慮保障負荷峰值時段系統(tǒng)充裕度、靈活爬坡能力出清價格充裕度。下一步計劃將類似考慮調峰能力充裕度。l
目標函數(shù):社會福利最大化
max
SW=
d
Pd
(
cgiPig
cwhPwh
cskPsk
cemP
)mel,n
l,nl,nihkm負荷火電風電光伏儲能容量/MW12/30Part2出清模型ü
容量市場出清模型構建根據(jù)各類型資源有效容量評估方法、系統(tǒng)容量充裕度評估方法、關鍵斷面約束辨識技術,構建充分考慮長期有效容量和煤電深調容量的容量市場出清模型。l
約束條件:?
供需平衡約束滿足系統(tǒng)靈活爬坡調節(jié)需求的容量供需平衡約束?
各類型機組中標容量約束、容量需求約束?
火電機組、儲能提供靈活爬坡調節(jié)容量?
采用嵌入式優(yōu)化考慮新能源不確定性波動保障負荷峰值時段系統(tǒng)充裕度的容量供需平衡約束
Fg
Fem
FCIOminisn
D
wD
sD
i
m
s
D
,
P
,
PPg
Pwh
Psk
Pemnhknnni
FnR:
FRupn,
n系統(tǒng)靈活爬坡調節(jié)容量需求考慮負荷、新能源出力的波動量的不確定性偏差i
h
k
m
nnnn
PCIO
=
Pd:
nCap
,
nl,nsn(
Fg
Fem
FCIO
(
FnR))mins
lisnn
D
,
P
,
PD
wD
sD
i
m
s
nnhknn區(qū)域s向區(qū)域n傳輸?shù)娜萘?/p>
0:
nFRdn
,
n13/30Part2出清模型ü
容量市場出清模型構建儲能0
Pem
CPe,max
:
e,min
,
e,max,
ml
約束條件:mmm0
Fme
RemPe,max
:
mfce,min
,
mfce,max
,
mm?
供需平衡約束?
各類型機組中標容量約束、容量需求約束
0
P
,
ep,max
,
mmemFemPe,maxm:ep,minm火電0
Pem
Fme
Pe,max
:
men,min
,
en,max
,
mmm0
Pg
CPg,max
:
ig,min
,
ig,max
,
i由邊際帶負荷能力的有效容量評估方法得到的,火電資源參與容量市場可提供的有效容量ii區(qū)域間傳輸容量0
Fg
RigPg,max
:
ifcg,min
,
ifcg,max
,
iii
Lmax
PCIO
Lmax
:
CIO,min
,
CIO,max0
Pgg
Fg
Pg,max
:
igp,min
,
igp,max
,
isnsnsnsnsniii火電資源所能提供的最大靈活爬坡調節(jié)容量CIO
PCIO
0
:
CIOPsn
ns
sn0
P
Fg
Pg,max
:
ign,min
,
ign,max
,
iiii
Lmax
FsCnIO
Lmax
:
FCIO,min
,
FCIO,maxsnsnsnsn新能源容量需求CIO
FnCsIO
0
:
sFnCIOFsnCIO0
Pd
Pd
,max0
Pws
CPw,max
:
hw,min
,
hw,max
,
h
Lmax
Psn
FCIO
L,min
,
L,maxL
:maxl,nl,nhhsnsnsn
sn
sn:
d,min
,
d,max
,
l,n0
P
CPs,max
:
ks,min
,
ks,max
,
k,
n,
s
nl,nl,nkk14/30標題目錄CONTENTS01容量市場的作用及問題P
A
R
T02保障靈活調節(jié)資源充裕性的容量市場出清模型P
A
R
T03
保障靈活調節(jié)資源充裕性的容量市場定價與結算機制P
A
R
T保障靈活調節(jié)資源充裕性的容量市場仿真測算結論與展望Part3
定價與結算機制ü
容量市場機制與規(guī)則設計l
容量市場定價機制:保障負荷峰值時段系
nCap統(tǒng)容量充裕度的容量價格容量市場出清價格靈活爬坡調節(jié)預測需求
EFR價格n
UFRINn靈活爬坡調節(jié)向上偏差需求價格滿足系統(tǒng)靈活爬坡調節(jié)需求的容量價格靈活爬坡調節(jié)不確定性偏差需求價格靈活爬坡調節(jié)向
nUFRDN下偏差需求價格16/30Part3
定價與結算機制ü
容量市場機制與規(guī)則設計l
容量市場定價機制:p
保障系統(tǒng)靈活性的容量價格
L靈活爬坡調節(jié)需求向上偏差價格
UFRIN
FRup
(uFRup
)
FRdn
(uFRdn
)n
n
(h)
n
n
(h)n
(
PwD,min
)①靈活爬坡調節(jié)預測需求價格h
n
L
FRup
uFRup()(
)
FRdn
uFRdnH
k)
n
n
(②靈活爬坡調節(jié)不確定性偏差需求價格nn(H
k
)
PsD(,min
)k
n
L
FRup
(uFRup
)
FRdn
(uFRdn
)
,
n(2(H
K)
N
n))靈活爬坡調節(jié)不確定性偏差需求價格與負荷、風電、光伏出力波動量的不確定性偏差值有關。
nn(2(H
K)
N
n))nn(
DD,max
)n
L靈活爬坡調節(jié)需求向下偏差價格
UFRDNn
nFRup(u
)(H
K
N
h)FRupn
nFRdn(u
)(H
K
N
h)nFRdn
PwD,maxh
n
L
nFRup
(unFRup
)(2H
nFRdn
(unFRdn(2H
K
N
k
))
K
N
k
)
PsD,maxk
n
L
nFRup
(unFRup)
nFRdn
(unFRdn
)(H
K
n)
,
nH
K
n)(
DnD,min()17/30Part3
定價與結算機制ü
容量市場機制與規(guī)則設計火電機組、儲能電站?
保障負荷峰值時段系統(tǒng)充裕性的容量收益l
容量市場結算機制:+保障系統(tǒng)靈活性的容量收益
g
Cap
Pg
(
FRup
FRdn
)F
g
,
iin:i
nin:i
nn:i
ni?
給出火電、新能源、儲能等不
e
Cap
Pe
(
FRup
FRdn
)F
e
,
m同類型資源相應的結算規(guī)則。?
有效區(qū)分不同類型資源的對于保障負荷峰值時段系統(tǒng)充裕度、靈活爬坡調節(jié)能力充裕度的有效容量貢獻與引起靈活爬坡調節(jié)需求的責任。n:m
nn:m
nn:m
nmmm風電場、光伏電站?
提供容量保障負荷峰值時段系統(tǒng)充裕性的收益-分攤由于自身出力波動造成的靈活調節(jié)需求成本
EFR
(
PwD,exp
)
UFRDN
PwD,max
n:h
nhn:h
nh
wj
CapPwh
,
hn:h
n
UFRIN(
PwD,min)
n:h
nh
EFR
(
PsD,exp
)
UFRDN
PsD,max
n:k
nkn:k
nk
ks
CapPsk
,
kn:k
n
UFRIN(
PsD,min)
n:k
nk18/30Part3
定價與結算機制ü
容量市場機制與規(guī)則設計區(qū)域間傳輸容量l
容量市場結算機制:?
考慮了區(qū)域之間的價格差異,當區(qū)域間傳輸通道發(fā)生阻塞時會產生阻塞盈余,應分配給對應輸電權所有者。?
給出火電、新能源、儲能等不同類型資源相應的結算規(guī)則。?
有效區(qū)分不同類型資源的對于保障負荷峰值時段系統(tǒng)充裕度、靈活爬坡調節(jié)能力充裕度的有效容量貢獻與引起靈活爬坡調節(jié)需求的責任。
CapPCIO
(
nFRup
nFRdn
)FCIOsn
snsnn負荷?
向容量市場支付保障負荷峰值時段系統(tǒng)充裕性+保障系統(tǒng)靈活性的容量費用
EFR
DD,exp
UFRDN
(
DD,min
)
d
CapPd
l,nnnnn
n,
nn
UFRIN
DD,max
lnn19/30Part3
定價與結算機制ü
容量市場機制性質驗證?
良好的市場機制應滿足社會效率、收支平衡、個體理性和激勵相容等性質,激勵市場主體主動參與,促進資源優(yōu)化配置。社會效率(SocialEfficiency)所提出的容量市場魯棒優(yōu)化出清模型的目標函數(shù)為最大化社會福利,即出清結果能夠在應對負荷、風電、光伏的任何不確定波動情況下實現(xiàn)盡可能大的社會福利,因此可以滿足社會效率性質。20/30Part3
定價與結算機制ü
容量市場機制性質驗證收支平衡(Budget
Balance)?
市場運營機構應為非盈利機構,市場的流入和流出資金應相等,即收支平衡。?容量市場流出資金:?容量市場流入資金:
(
Cap
Pg
(
FRup
FRdn
)Fg)
ninni
IN
CapnPdl,n
EFRnDexpn
(
UFRDN
(
DnD,min
)
nUFRIN
DnD,max)
n
OT
i
nlnn
(
Cap
Pe(FRupnFRdn
)Fe
)nmnm負荷為引起峰值時段需求、引起靈活調節(jié)需求所支付的費用
m
EFR
(
PwD,exp
)
(
UFRDN
PwD,max
nUFRIN
(
PwD,min))nhnhh支付給火電、儲能保障負荷峰值時段
hh系統(tǒng)充裕度、滿足系統(tǒng)靈活調節(jié)需求的費用風電為引起靈活調節(jié)需求所支付的費用
n
Cap
Pw
Cap
Psk
EFR
(
PsD,exp
)
(
UFRDN
PsD,max
nUFRIN
(
PsD,min
))nh
nknkk
hkkk支付給風電和光伏保障負荷峰值時段系統(tǒng)充裕度的費用光伏為引起靈活調節(jié)需求所支付的費用
(
Cap
PCIO
(
FRup
FRdn
)FCIO
)nsnnnsn
IN
OT
根據(jù)供需平衡約束和KKT條件,可以推導出sn區(qū)域傳輸容量阻塞盈余21/30Part3
定價與結算機制ü
容量市場機制性質驗證個體理性(Individual
Rationality)?
個體理性指市場成員愿意主動參與市場,即各市場成員的凈利潤非負。以火電機組為例
ig
capPig
(
FRup
FRdn
)Fg
cigPig火電機組利潤為:n:i
nn:i
nn:i
ni
(
cap
cig)Pg
(
FRup
FRdn
)Fig根據(jù)KKT條件,可以推導出n:i
nin:i
nn:i
n
(
ig,max
ig,min
igp,max
igp,min
ign,max
ign,min
)Pgi
(
igp,max
igp,min
ign,max
ign,min
ifcg,max
ifcg,min
)Fgi
Pg,max
(
ig,max
igp,max
ign,max
)
Rigg,max
ifcg,maxPii
022/30Part3
定價與結算機制ü
容量市場機制性質驗證激勵相容(Incentive
Compatibility)?
激勵相容是指市場成員追求自身利潤最大的結果與市場整體實現(xiàn)社會福利最大化的結果一致,即市場成員根據(jù)市場出清價格計算使得自身利潤最大化的出力計劃與市場根據(jù)成員報價出清的出力計劃一致。?
容量市場出清模型?市場成員根據(jù)市場出清價格以自身利潤最大化為目標進行優(yōu)化的模型
cr
xrTmin
x,y,z
rRrmax
s.t.
ACap
x
AFR
y
AUFR
z
B
:
τ
,
nrrrrrrnn
Capn:r
n
FRn:r
n
UFRn:r
n
Tr
r
r
r
nmax
ρx
ρy
ρz
c
x
nnrrrr
r
(x
,
y
,z
)
Χ
,
r
x
,y
,zrrrrrr
s.t.(x
,y
,z
)
Χ
,
r
rrrr對偶轉換由KKT可得,目標函數(shù)滿足
Rrmax
(ρCap
,
ρFR
,
ρUFR
)
(ρCap
*r
FRn:r
n*r
ρUFRn:r
n*r
Tr*rxρyzcx)n:r
nn:r
nn:r
nn:r
n
[Rrmax
(ρCap*
,
ρFR*
,
ρUFR*
)
(ρCap*x*r
ρFR*y*r
ρUFR*z*r
crTx*r)]rr
n:r
nn:r
nn:r
nn:r
nn:r
nn:r
n
minn
τ(
)T(
ArCap
x
AFR
y
AUFR
z
B*r*r*r)rnrrn
0τ
0
r
nnrrnn
(x
,
y
,z
)
Χ
,
rx
x*r,
y
y*r,
z
zr*r當上式等號成立,即市場成員使得自身利rrrrrr潤最大化的容量策略與容量市場出清的中標容量一致23/30PromotionalArticleaddedbytheECE,notincludedintheoriginalslidesReceived:
16
December
2020Revised:
11
April
2021Accepted:
17
April
2021Energy
Conversion
and
EconomicsDOI:
10.1049/enc2.12036ORIGINAL
RESEARCH
PAPEROption-based
portfolio
risk
hedging
strategy
for
gas
generatorbased
on
mean-variance
utility
modelShuying
LaiJing
QiuYuechuan
TaoSchool
of
Electrical
and
Information
Engineering,The
University
of
Sydney,
Sydney,
AustraliaAbstractNatural
gas
generators
are
promising
devices
for
reducing
greenhouse
gas
emissions.
How-ever,
gas
generators
encounter
dif?culties
in
the
bid-to-sell
process
based
on
a
relativelyhigh
levelised
cost
of
energy
for
power
generation.
Therefore,
a
novel
risk
hedging
strategyis
developed
based
on
the
mean-variance
portfolio
theory
to
reduce
the
operational
risksof
gas
generators
and
enhance
their
pro?ts.
Three
types
of
options
are
utilised
and
com-bined
to
form
a
portfolio
of
?nancial
hedges:
the
short
put
option,
long
put
option,
andshort
call
option.
Two
types
of
energy
storage
devices
are
used
to
facilitate
the
risk
hedgingprocess,
namely
power-to-gas
and
battery
devices.
Simulation
results
demonstrate
that
theproposed
risk
hedging
model
can
ensure
higher
pro?ts
for
gas
generators
with
reducedrisk
compared
to
the
traditional
risk
hedging
model
and
a
model
using
only
one
type
ofoption.
Additionally,
the
varied
risk
preferences
of
gas
generators
lead
to
varied
portfoliocombinations.
The
more
risk
averse
a
gas
generator,
the
more
likely
the
long-put
optionwill
be
utilised.
In
contrast,
the
less
risk
averse
a
gas
generator,
the
more
likely
that
shortcalls
will
be
utilised.標題目錄CONTENTS01容量市場的作用及問題P
A
R
T02保障靈活調節(jié)資源充裕性的容量市場出清模型P
A
R
T03
保障靈活調節(jié)資源充裕性的容量市場定價與結算機制04
保障靈活調節(jié)資源充裕性的容量市場仿真測算P
A
R
T結論與展望Part4
仿真測算ü
算例分析?
考慮保障負荷峰值時段系統(tǒng)充裕度、靈活爬坡能力充裕度。下一步計劃將類似考慮調峰能力充裕度。?
選取修正的IEEE-118節(jié)點系統(tǒng)進行算例分析,將該系統(tǒng)劃分為3個區(qū)域,其中區(qū)域1新能源機組較為集中,共有2臺火電機組、7座風電場、5座光伏電站和1座儲能電站;區(qū)域2和3則具有較多爬坡性能優(yōu)異的靈活性資源,區(qū)域2共有12臺火電機組、4座風電場、2座光伏電站和2座儲能電站;區(qū)域3共有11臺火電機組、3座風電場、2座光伏電站和3座儲能電站。25/30Part4
仿真測算各區(qū)域出清價格ü
算例分析出清價格/(元/(MW·天))區(qū)域
1區(qū)域
2區(qū)域
3
Cap210180210n
EFR11011008080010100n
Capn
UFRIN?
保障負荷峰值時段系統(tǒng)充裕性的容量價格:n
UFRDN區(qū)域2為180元/(MW·天),低于區(qū)域1和3。因為區(qū)域1和區(qū)域3需要由區(qū)域2來提供容量保障各自區(qū)域內的負荷峰值時段系統(tǒng)充裕性,區(qū)域2和其它區(qū)域之間存在阻塞,區(qū)域1、3的保障負荷峰值時段系統(tǒng)充裕度的容量出清價格高于區(qū)域2。n區(qū)域需求容量火電中標容量儲能中標容量風電中標容量光伏中標容量1201008060402001
0009008007006005004003002001000區(qū)域需求容量火電中標容量儲能中標容量906.7595區(qū)域需求容量區(qū)間710
EFRn?
靈活爬坡調節(jié)預測需求價格:區(qū)域1為110元545/(MW·天),高于區(qū)域2、3。因為區(qū)域1為高比例新能源區(qū)域,風電場、光伏電站裝機容量占比高達80%,具有較大的靈活調節(jié)需求,但其火電機組數(shù)量少且爬坡系數(shù)小,靈活調節(jié)性能較差,需要由其他區(qū)域提供容量來保障系統(tǒng)靈活性,傳輸通道發(fā)生阻塞。364.444.5
上范圍45上范圍4523上范圍下范圍38.25下范圍31.5195下范圍178.85231.25區(qū)域1區(qū)域2區(qū)域3區(qū)域1區(qū)域2區(qū)域3(a)各區(qū)域保障負荷峰值時段充裕度的中標容量與需求容量(b)各區(qū)域滿足靈活爬坡調節(jié)需求的中標容量與需求容量26/30Part4
仿真測算各區(qū)域出清價格出清價格/(元/(MW·天))區(qū)域
1區(qū)域
2區(qū)域
3ü
算例分析
Cap210180210n
EFR11011008080010100n
UFRIN
UFRIN:等于靈活?
靈活爬坡調節(jié)需求向上偏差價格nn
UFRDN
EFR爬坡調節(jié)預測需求價格
。因為本算例中各區(qū)域nn的靈活調節(jié)需求大于0,即表示需要向上的滿足靈活調節(jié)需求的容量。此時算例中的靈活爬坡調節(jié)預測需求價格與靈活爬坡調節(jié)不確定性偏差需求價格均由靈活爬坡供需約束的對偶變量決定。區(qū)域需求容量火電中標容量儲能中標容量風電中標容量光伏中標容量1201008060402001
0009008007006005004003002001000區(qū)域需求容量火電中標容量儲能中標容量906.7595區(qū)域需求容量區(qū)間710
UFRDNn545?
靈活爬坡調節(jié)需求向下偏差價格:等于0。44.5
上范圍45上范圍下范圍4523上范圍下范圍因為算例中靈活爬坡調節(jié)需求大于0,當靈活爬坡調節(jié)需求不確定性向下偏差時,即需求減小,原本的出清結果依舊能夠滿足需求。364.438.25下范圍31.5195178.85231.25區(qū)域1區(qū)域2區(qū)域3區(qū)域1區(qū)域2區(qū)域3(a)各區(qū)域保障負荷峰值時段充裕度的中標容量與需求容量(b)各區(qū)域滿足靈活爬坡調節(jié)需求的中標容量與需求容量27/30Part4
仿真測算ü
算例分析典型機組收益?
對比火電機組G40和G41,可見二者的報價和裝機容量均相同,由于G40爬坡系數(shù)大于G41,靈活調節(jié)能力更好,能夠提供更多的容量來滿足系統(tǒng)靈活調節(jié)需求,因此G40的收益高于G41。?
對比風電場G28和G29、光伏電站G32和G33、儲能電站G34和G35,可見相同報價與裝機容量下,可用容量系數(shù)越大,即資源參與容量市場的可用容量越大,保障負荷峰值時段系統(tǒng)充裕度的容量中標量越大,收益越多。?
所提出的容量市場機制能夠有效區(qū)分不同類型資源對于保障負荷峰值時段系統(tǒng)充裕度和滿足靈活爬坡調節(jié)需求的貢獻,并給予相應的獎勵。相同條件下,資源的靈活調節(jié)能力越好,可用容量系數(shù)越大,則所能獲得的收益越多。28/30PromotionalArticleaddedbytheECE,notincludedintheoriginalslidesReceived:
9
December
2020Revised:
3
May
2021Accepted:
11
May
2021Energy
Conversion
and
EconomicsDOI:
10.1049/enc2.12037ORIGINAL
RESEARCH
PAPERElectricity
economics
for
ex-ante
double-sided
auctionmechanism
in
restructured
power
marketAruna
KanagarajKumudini
Devi
Raguru
PanduDepartment
of
EEE,
College
of
EngineeringGuindy,
Anna
University,
Chennai,
Tamil
Nadu,IndiaAbstractAuction
mechanism
analysis
provides
favourable
economic
outcomes
for
key
stakeholdersinvolved
in
the
restructured
power
market.
Real
power
pricing
based
on
locational
marginalpricing
has
been
implemented
in
the
electricity
market
worldwide.
In
this
study,
the
opti-mal
power
?ow
is
considered
to
minimise
the
operating
cost
of
the
active
power
gener-ation
in
the
ex-ante
energy
market
and
an
augmented
optimal
power
?ow
in
the
ex-antereserve
market.
The
double-sided
auction
mechanism
has
better
control
over
the
energyand
reserve
markets,
enhancing
social
welfare
in
the
restructured
power
markets.
Single-and
double-sided
auction
mechanisms
are
considered
to
analyse
the
allocation
and
pricingeconomics
in
the
ex-ante
day-ahead
energy
and
ex-ante
day-ahead
reserve
markets.
Loca-tional
marginal
pricing
is
calculated
and
analysed
for
both
the
on-and
off-peak
demandperiods.
The
proposed
auction
model
was
validated
using
an
IEEE
30-bus
power
system.The
bene?ts
of
the
double-sided
auction
are
assessed
from
technical
and
economic
per-spectives.標題目錄CONTENTS01容量市場的作用及問題P
A
R
T02保障靈活調節(jié)資源充裕性的容量市場出清模型P
A
R
T03
保障靈活調節(jié)資源充裕性的容量市場定價與結算機制04
保障靈活調節(jié)資源充裕性的容量市場仿真測算P
A
R
T05結論與展望P
A
R
T29/30Part5
結論與展望l
針對新型電力系統(tǒng)發(fā)展下靈活調節(jié)資源稀缺性逐漸凸顯的問題,提出了保障靈活調節(jié)資源充裕性的容量市場機制總結l
采用不確定性定價方法給出了靈活調節(jié)容量電價l
所提機制有效保障了系統(tǒng)靈活調節(jié)資源的充裕性l
進一步應考慮新型電力系統(tǒng)其他維度的充裕性需求,并與現(xiàn)貨電能量與輔助服務市場做好有效銜接30/30謝謝!請批評指正!西安交通大學電氣工程學院肖云鵬2023年9月Energy
Conversion
and
EconomicsDOI:
10.1049/enc2.12050ORIGINAL
RESEARCH
PAPERDistributed
control
strategy
for
transactive
energy
prosumers
inreal-time
marketsChen
Yin1Ran
Ding2Haixiang
Xu2Gengyin
Li1Xiupeng
Chen3Ming
Zhou11
State
Key
Laboratory
of
Alternate
Electrical
PowerSystem
with
Renewable
Energy
Sources,
School
ofElectrical
and
Electronic
Engineering,
North
ChinaElectric
Power
University,
Beijing,
ChinaAbstractThe
increasing
penetration
of
distributed
energy
resources
(DERs)
has
led
to
increasingresearch
interest
in
the
cooperative
control
of
multi-prosumers
in
a
transactive
energy
(TE)paradigm.
While
the
existing
literature
shows
that
TE
offers
signi?cant
grid
?exibility
andeconomic
bene?ts,
few
studies
have
addressed
the
incorporation
of
security
constraints
inTE.
Herein,
a
market-based
control
mechanism
in
real-time
markets
is
proposed
to
eco-nomically
coordinate
the
TE
among
prosumers
while
ensuring
secure
system
operation.Considering
the
dynamic
characteristics
of
batteries
and
responsive
demands,
a
model
pre-dictive
control
(MPC)
method
is
used
to
handle
the
constraints
between
different
timeintervals
and
incorporate
the
following
generation
and
consumption
predictions.
Owing
tothe
computational
burden
and
individual
privacy
issues,
an
ef?cient
distributed
algorithmis
developed
to
solve
the
optimal
power
?ow
problem.
The
strong
coupling
between
pro-sumers
through
power
networks
is
removed
by
introducing
auxiliary
variables
to
acquirelocational
marginal
prices
(LMPs)
covering
energy,
congestion,
and
loss
components.
Casestudies
based
on
the
IEEE
33-bus
system
demonstrated
the
ef?ciency
and
effectiveness
ofthe
proposed
method
and
model.2
State
Grid
Jibei
Electric
Power
Co.,
Ltd.,
Beijing,China3
Engineering
and
Technology
Institute
Groningen,University
of
Groningen,
Groningen,
TheNetherlandsCorrespondenceXiupengChen,EngineeringandTechnologyInstituteGroningen,UniversityofGroningen,9742AGGroningen,TheNetherlands.Email:a1124756041@163.comFundinginformationStateGridCorporationof
China,Grant/AwardNumber:5201202000161INTRODUCTIONcontrol
actions.
However,
this
centralized
network
architectureis
of
great
concern,
because
sending
all
this
information
to
aDriven
by
growing
environmental
and
climate
concerns,
dis-tributed
energy
resources
are
increasing
in
the
penetration
rateof
distribution
networks,
and
distribution
power
networks
areundergoing
a
fundamental
transition.
In
traditional
power
grids,users
only
have
load
characteristics,
but
with
the
rapid
develop-ment
of
distributed
power
generation
technology
and
Internettechnology,
users
can
gradually
manage
internal
power
genera-tion
and
storage
resources,
and
deliver
electrical
energy,
namelyprosumers.
Prosumers
are
end-use
consumers
with
local
genera-tion
sources,
for
example,
photovoltaic
(PV)
panels
and/or
bat-tery,
and
are
able
to
manage
their
consumption
and
productionof
energy
actively.
Under
the
promotion
of
the
market-basedtrading,
these
prosumers
are
held
as
independent
stakeholdersto
participate
in
power
market
operation
[1].
Traditionally,
distri-bution
power
networks
are
kept
stable
and
secure
by
centralizedsystem
operator
introduces
scalability,
complexity
and
privacyissues
[2].
Consequently,
more
decentralized
network
controland
optimization
techniques
are
required
to
support
the
energyamong
large
numbers
of
prosumers
[3].It
is
necessary
to
coordinate
the
market
and
control
and
man-age
the
system
through
economic
value
to
ensure
that
pro-sumers
participate
in
market
transactions
and
the
safe
and
?ex-ible
operation
of
the
system,
the
existing
research
about
mech-anism
design
for
prosumers
can
be
classi?ed
into
two
cate-gories:
distributed
optimization-based
method
[4]
and
gametheory
based
method
[5].
In
the
former
approach,
all
prosumersare
willing
to
collaborate
to
achieve
a
certain
goal,
for
example,maximizing
social
welfare.
A
non-pro?t
agent,
for
example,
sys-tem
operator
(SO),
is
programmed
to
set
prices
and
individualprosumers
choose
their
corresponding
strategies
as
price
takes.This
is
an
open
access
article
under
the
terms
of
the
Creative
Commons
Attribution
License,
which
permits
use,
distribution
and
reproduction
in
any
medium,
provided
the
original
work
isproperly
cited.?
2022
The
Authors.
Energy
Conversion
and
Economics
published
by
John
Wiley
&
Sons
Ltd
on
behalf
of
The
Institution
of
Engineering
and
Technology
and
the
State
Grid
Economic
&Technological
Research
Institute
Co.,
Ltd.Energy
Convers.
Econ.
2022;3:1–10./iet-ece12YIN
ET
AL.The
interaction
between
prosumers
with
the
SO
is
privacy
pre-serving
as
only
energy
preferences
are
communicated.
A
dis-tributed
price-based
optimization
mechanism
for
prosumers’energy
management
is
proposed
in
[6]
based
on
the
alternat-ing
direction
method
of
multipliers
(ADMM)
method.
In
[7],a
relaxed
consensus
innovation
(RCI)
approach
is
described
tosolve
multi-bilateral
economic
dispatch
problem
in
fully
decen-tralized
manner.
A
distributed
generation
and
demand
controlschemes
for
secondary
frequency
regulation
in
power
networksis
presented
to
guarantee
system
stability
and
economic
optimal-ity
simultaneously
[8].
In
the
latter
approach,
con?icting
inter-ests
of
prosumers
are
characterized.
The
key
point
here
is
tomodel
the
decision-making
processes
of
prosumers
and
?nd
theNash
equilibrium
so
that
each
prosumer
maximizes
their
prof-its
while
ensuring
the
system
supply
and
demand
balance.
Ref.[9]
systematically
clari?es
various
game-
and
auction-theoreticmethods
used
for
peer-to-peer
(P2P)
energy
trading
among
pro-sumers.
an
incentive-compatible
mechanism
is
proposed
in
[10]to
elicit
truthful
bids
of
generators
and
coordinate
the
economicoperation.
An
optimal
bidding
framework
is
proposed
in
[11]for
a
regional
energy
internet
to
participate
in
day-ahead
marketsconsidering
carbon
trading.
An
auction-theoretic
scheme
is
pre-sented
for
prosumer
models
and
resource
constraints
in
[12].
Anenergy
sharing
mechanism
is
proposed
in
[13]
to
accommodateprosumers’
strategic
decision-making
on
their
self-productionand
demand
in
the
presence
of
capacity
constraints.
In
thispaper,
a
distributed
optimization
algorithm
is
applied
consid-ering
the
fact
that
there
are
suf?cien
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電信行業(yè)薪資調研報告
- 旅游行業(yè)前臺接待工作總結
- 二年級班主任期中工作總結溫馨關懷成長陪伴
- 秘書工作的職業(yè)素養(yǎng)培養(yǎng)計劃
- 公園服務員工作內容
- 銀行柜員服務工作評價
- 2024年筍的秘密教案8篇
- 出賣房屋合同(2篇)
- 第17課 二戰(zhàn)后資本主義的新變化(分層作業(yè))(原卷版)
- 第2單元 古代歐洲文明(A卷·知識通關練)(原卷版)
- 2024年度員工試用期勞動合同模板(含保密條款)3篇
- 2024-2030年全球與中國汽車音頻DSP芯片組市場銷售前景及競爭策略分析報告
- 機關事業(yè)單位財務管理制度(六篇)
- 2025禮品定制合同范本
- 醫(yī)院消毒隔離制度范文(2篇)
- 2024年01月11026經濟學(本)期末試題答案
- 烘干煤泥合同范例
- 人教版六年級上冊數(shù)學第八單元數(shù)學廣角數(shù)與形單元試題含答案
- 2025年“三基”培訓計劃
- 第20課 北洋軍閥統(tǒng)治時期的政治、經濟與文化 教案
- 住房公積金稽核審計工作方案例文(4篇)
評論
0/150
提交評論