版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆福建師大附中高一數(shù)學第二學期期末考試試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知a>0,b>0,a,b的等比中項為2,則a+1A.3 B.4 C.5 D.422.已知函數(shù),若,,則()A. B.2 C. D.3.已知向量,,則向量在向量方向上的投影為()A. B. C. D.4.將函數(shù)(其中)的圖象向右平移個單位,若所得圖象與原圖象重合,則不可能等于()A.0 B. C. D.5.半徑為,中心角為的弧長為()A. B. C. D.6.若函數(shù)的圖象上所有的點向右平移個單位長度后得到的函數(shù)圖象關(guān)于對稱,則的值為A. B. C. D.7.把函數(shù)的圖像上所有的點向左平行移動個單位長度,再把所得圖像上所有點的橫坐標縮短到原來的(縱坐標不變),得到的圖像所表示的函數(shù)是()A. B.C. D.8.閱讀如圖所示的程序框圖,運行相應(yīng)的程序,輸出的值等于()A.-3 B.-10 C.0 D.-29.平行四邊形中,若點滿足,,設(shè),則()A. B. C. D.10.若函數(shù),則()A.9 B.1 C. D.0二、填空題:本大題共6小題,每小題5分,共30分。11.數(shù)列的前項和為,已知,且對任意正整數(shù),都有,若恒成立,則實數(shù)的最小值為________.12.________13.如圖,在中,,是邊上一點,,則.14.已知函數(shù),下列說法:①圖像關(guān)于對稱;②的最小正周期為;③在區(qū)間上單調(diào)遞減;④圖像關(guān)于中心對稱;⑤的最小正周期為;正確的是________.15.已知呈線性相關(guān)的變量,之間的關(guān)系如下表所示:由表中數(shù)據(jù),得到線性回歸方程,由此估計當為時,的值為______.16.數(shù)列中,其前n項和,則的通項公式為______________..三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在平面直角坐標系中,直線截以原點為圓心的圓所得的弦長為.(1)求圓的方程;(2)若直線與圓切于第一象限,且與坐標軸交于點,當長最小時,求直線的方程;(3)設(shè)是圓上任意兩點,點關(guān)于軸的對稱點,若直線分別交軸于點和,問是否為定值?若是,請求出該定值;若不是,請說明理由.18.已知函數(shù).(1)求的單調(diào)增區(qū)間;(2)求的圖像的對稱中心與對稱軸.19.如圖,在四棱錐中,,,,,,,分別為棱,的中點.(1)證明:平面.(2)證明:平面平面.20.已知函數(shù).(1)求的單調(diào)遞增區(qū)間;(2)求不等式的解集.21.已知函數(shù).(1)求函數(shù)的最小正周期;(2)求函數(shù)的單調(diào)區(qū)間.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】
由等比中項得:ab=4,目標式子變形為54【題目詳解】∵a+1等號成立當且僅當a=b=2,∴原式的最小值為5.【題目點撥】利用基本不等式求最小值時,注意驗證等號成立的條件.2、C【解題分析】
由函數(shù)的解析式,求得,,進而得到,,結(jié)合兩角差的余弦公式和三角函數(shù)的基本關(guān)系式,即可求解.【題目詳解】由題意,函數(shù),令,即,即,所以,令,即,即,所以,又因為,,即,,所以,,即,,平方可得,,兩式相加可得,所以.故選:C.【題目點撥】本題主要考查了兩角和與差的余弦公式,三角函數(shù)的基本關(guān)系式的應(yīng)用,以及函數(shù)的解析式的應(yīng)用,其中解答中合理應(yīng)用三角函數(shù)的恒等變換的公式進行運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于中檔試題.3、B【解題分析】
先計算向量夾角,再利用投影定義計算即可.【題目詳解】由向量,,則,,向量在向量方向上的投影為.故選:B【題目點撥】本題考查了向量數(shù)量積的坐標表示以及向量數(shù)量積的幾何意義,屬于基礎(chǔ)題.4、D【解題分析】由題意,所以,因此,從而,可知不可能等于.5、D【解題分析】
根據(jù)弧長公式,即可求得結(jié)果.【題目詳解】,.故選D.【題目點撥】本題考查了弧長公式,屬于基礎(chǔ)題型.6、C【解題分析】
先由題意求出平移后的函數(shù)解析式,再由對稱中心,即可求出結(jié)果.【題目詳解】函數(shù)的圖象上所有的點向右平移個單位長度后,可得函數(shù)的圖像,又函數(shù)的圖象關(guān)于對稱,,,故,又,時,.故選C.【題目點撥】本題主要考查由平移后的函數(shù)性質(zhì)求參數(shù)的問題,熟記正弦函數(shù)的對稱性,以及函數(shù)的平移原則即可,屬于??碱}型.7、C【解題分析】
根據(jù)左右平移和周期變換原則變換即可得到結(jié)果.【題目詳解】向左平移個單位得:將橫坐標縮短為原來的得:本題正確選項:【題目點撥】本題考查三角函數(shù)的左右平移變換和周期變換的問題,屬于基礎(chǔ)題.8、A【解題分析】
第一次循環(huán),;第二次循環(huán),;第三次循環(huán),,當時,不成立,循環(huán)結(jié)束,此時,故選A.9、B【解題分析】
畫出平行四邊形,在上取點,使得,在上取點,使得,由圖中幾何關(guān)系可得到,即可求出的值,進而可以得到答案.【題目詳解】畫出平行四邊形,在上取點,使得,在上取點,使得,則,故,,則.【題目點撥】本題考查了平面向量的線性運算,考查了平面向量基本定理的應(yīng)用,考查了平行四邊形的性質(zhì),屬于中檔題.10、B【解題分析】
根據(jù)的解析式即可求出,進而求出的值.【題目詳解】∵,∴,故,故選B.【題目點撥】本題主要考查分段函數(shù)的概念,以及已知函數(shù)求值的方法,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】令,可得是首項為,公比為的等比數(shù)列,所以,,實數(shù)的最小值為,故答案為.12、【解題分析】
根據(jù)極限的運算法則,合理化簡、運算,即可求解.【題目詳解】由極限的運算,可得.故答案為:【題目點撥】本題主要考查了極限的運算法則的應(yīng)用,其中解答熟記極限的運算法則,準確計算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.13、【解題分析】
由圖及題意得
,
=
∴
=(
)(
)=
+
=
=
.14、②③⑤【解題分析】
將函數(shù)解析式改寫成:,即可作出函數(shù)圖象,根據(jù)圖象即可判定.【題目詳解】由題:,,所以函數(shù)為奇函數(shù),,是該函數(shù)的周期,結(jié)合圖象分析是其最小正周期,,作出函數(shù)圖象:可得,該函數(shù)的最小正周期為,圖像不關(guān)于對稱;在區(qū)間上單調(diào)遞減;圖像不關(guān)于中心對稱;故答案為:②③⑤【題目點撥】此題考查三角函數(shù)圖象及其性質(zhì)的辨析,涉及周期性,對稱性和單調(diào)性,作為填空題,恰當?shù)乩脠D象解決問題能夠起到事半功倍的作用.15、【解題分析】由表格得,又線性回歸直線過點,則,即,令,得.點睛:本題考查線性回歸方程的求法和應(yīng)用;求線性回歸方程是??嫉幕A(chǔ)題型,其主要考查線性回歸方程一定經(jīng)過樣本點的中心,一定要注意這一點,如本題中利用線性回歸直線過中心點求出的值.16、【解題分析】
利用遞推關(guān)系,當時,,當時,,即可求出.【題目詳解】由題知:當時,.當時,.檢驗當時,,所以.故答案為:【題目點撥】本題主要考查根據(jù)數(shù)列的前項和求數(shù)列的通項公式,體現(xiàn)了分類討論的思想,屬于簡單題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(1);(3)定值為.【解題分析】試題分析:(1)求出點到直線的距離,進而可求圓的半徑,即可得到圓的方程;(1)設(shè)直線的方程,利用直線與圓相切,及基本不等式,可求長最小時,直線的方程;(3)設(shè),則,求出直線,分別與軸交點,進而可求的值.試題解析:(1)因為點到直線的距離為,所以圓的半徑為,故圓的方程為.(1)設(shè)直線的方程為,即,由直線與圓相切,得,即,,當且僅當時取等號,此時直線的方程為,所以當長最小進,直線的方程為.(3)設(shè)點,則,直線與軸交點為,則,直線與軸交點為,則,所以,故為定值1.考點:1.直線和圓的方程的應(yīng)用;1.直線與圓相交的性質(zhì).18、(1);(2)對稱中心,;對稱軸為【解題分析】
利用誘導公式可將函數(shù)化為;(1)令,求得的范圍即為所求單調(diào)增區(qū)間;(2)令,求得即為對稱中心橫坐標,進而得到對稱中心;令,求得即為對稱軸.【題目詳解】(1)令,,解得:,的單調(diào)遞增區(qū)間為(2)令,,解得:,的對稱中心為,令,,解得:,的對稱軸為【題目點撥】本題考查正弦型函數(shù)單調(diào)區(qū)間、對稱軸和對稱中心的求解,涉及到誘導公式化簡函數(shù)的問題;關(guān)鍵是能夠熟練掌握整體對應(yīng)的方式,結(jié)合正弦函數(shù)的性質(zhì)來求解單調(diào)區(qū)間、對稱軸和對稱中心.19、(1)見解析(2)見解析【解題分析】
(1)由勾股定理得,已知,故得證;(2)由題,E為AB中點,,故ABCD為平行四邊形,,由F為PB中點,EF為三角形APB的中位線,故,AP和AD相交于A,EF和CE相交于E,故得證.【題目詳解】證明:(1)因為,,,所以,由所以.因為,,所以平面.(2)因為為棱的中點,所以,因為,所以.因為,所以,所以四邊形為平行四邊形,所以,所以平面.因為,分別為棱,的中點,所以,所以平面.因為,平面,平面,所以平面平面.【題目點撥】本題考查直線和平面垂直的判定,平面和平面平行的判斷,比較基礎(chǔ).20、(1),;(2),【解題分析】
(1)由余弦函數(shù)單調(diào)區(qū)間的求法,解不等式即可得解;(2)解三角不等式即可得解.【題目詳解】解:解:(1)令,,解得,,故的單調(diào)遞增區(qū)間為,.(2)因為,所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版高科技產(chǎn)品出口許可與合同履行協(xié)議3篇
- 二零二五版國際貿(mào)易合同擔保法風險管理合同3篇
- 碎石加工設(shè)備2025年度保險合同2篇
- 二零二五版企業(yè)員工勞務(wù)派遣與員工福利保障合同3篇
- 二零二五年度糧食儲備與農(nóng)業(yè)產(chǎn)業(yè)化合作合同3篇
- 二零二五年度高層綜合樓公共收益分配管理合同3篇
- 二零二五年度校車運營服務(wù)與兒童座椅安全檢測合同3篇
- 二零二五版帶儲藏室裝修包售二手房合同范本3篇
- 二零二五年房地產(chǎn)合作開發(fā)與股權(quán)讓渡綜合合同2篇
- 二零二五年度花木種植與生態(tài)農(nóng)業(yè)園區(qū)建設(shè)合同3篇
- 畢淑敏心理咨詢手記在線閱讀
- 亞硝酸鈉安全標簽
- pcs-985ts-x說明書國內(nèi)中文版
- GB 11887-2012首飾貴金屬純度的規(guī)定及命名方法
- 小品《天宮賀歲》臺詞劇本手稿
- 醫(yī)院患者傷口換藥操作課件
- 欠薪強制執(zhí)行申請書
- 礦山年中期開采重點規(guī)劃
- 資源庫建設(shè)項目技術(shù)規(guī)范匯編0716印刷版
- GC2級壓力管道安裝質(zhì)量保證體系文件編寫提綱
- 預應(yīng)力混凝土簡支小箱梁大作業(yè)計算書
評論
0/150
提交評論