![山西農(nóng)業(yè)大學(xué)附屬中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末達標檢測模擬試題含解析_第1頁](http://file4.renrendoc.com/view11/M02/1E/1A/wKhkGWWiv72ADCViAAGi9gPJ4cY598.jpg)
![山西農(nóng)業(yè)大學(xué)附屬中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末達標檢測模擬試題含解析_第2頁](http://file4.renrendoc.com/view11/M02/1E/1A/wKhkGWWiv72ADCViAAGi9gPJ4cY5982.jpg)
![山西農(nóng)業(yè)大學(xué)附屬中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末達標檢測模擬試題含解析_第3頁](http://file4.renrendoc.com/view11/M02/1E/1A/wKhkGWWiv72ADCViAAGi9gPJ4cY5983.jpg)
![山西農(nóng)業(yè)大學(xué)附屬中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末達標檢測模擬試題含解析_第4頁](http://file4.renrendoc.com/view11/M02/1E/1A/wKhkGWWiv72ADCViAAGi9gPJ4cY5984.jpg)
![山西農(nóng)業(yè)大學(xué)附屬中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末達標檢測模擬試題含解析_第5頁](http://file4.renrendoc.com/view11/M02/1E/1A/wKhkGWWiv72ADCViAAGi9gPJ4cY5985.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山西農(nóng)業(yè)大學(xué)附屬中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末達標檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知向量,,若,則()A. B. C. D.2.過點且與點距離最大的直線方程是()A. B.C. D.3.如圖,矩形ABCD中,點E為邊CD的中點,若在矩形ABCD內(nèi)部隨機取一個點Q,則點Q取自△ABE內(nèi)部的概率等于A. B.C. D.4.已知點P為圓上一個動點,O為坐標原點,過P點作圓O的切線與圓相交于兩點A,B,則的最大值為()A. B.5 C. D.5.一個三角形的三邊長成等比數(shù)列,公比為,則函數(shù)的值域為()A.(,+∞) B.[,+∞) C.(,-1) D.[,-1)6.已知,則點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.若則所在象限為()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.在中,若,則的形狀是()A.等邊三角形 B.等腰三角形C.直角三角形 D.等腰三角形或直角三角形9.若直線被圓截得弦長為4,則的最小值是()A.9 B.4 C. D.10.已知是邊長為4的等邊三角形,為平面內(nèi)一點,則的最小值是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知等差數(shù)列的前項和為,若,則_______.12.已知數(shù)列的前項和為,,,則__________.13.已知圓:,若對于圓:上任意一點,在圓上總存在點使得,則實數(shù)的取值范圍為__________.14.等差數(shù)列,的前項和分別為,,且,則______.15.已知數(shù)列中,,,則數(shù)列通項___________16.一個扇形的半徑是,弧長是,則圓心角的弧度數(shù)為________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,四棱錐P-ABCD的底面是矩形,側(cè)面PAD是正三角形,且側(cè)面PAD⊥底面ABCD,E為側(cè)棱PD的中點.(1)求證:PB//平面EAC;(2)求證:AE⊥平面PCD;(3)當(dāng)為何值時,PB⊥AC?18.已知向量(1)求函數(shù)的單調(diào)遞減區(qū)間;(2)在中,,若,求的周長.19.已知關(guān)于的不等式.(1)若不等式的解集為,求實數(shù)的值;(2)若不等式的解集為,求實數(shù)的取值范圍.20.對于三個實數(shù)、、,若成立,則稱、具有“性質(zhì)”.(1)試問:①,0是否具有“性質(zhì)2”;②(),0是否具有“性質(zhì)4”;(2)若存在及,使得成立,且,1具有“性質(zhì)2”,求實數(shù)的取值范圍;(3)設(shè),,,為2019個互不相同的實數(shù),點()均不在函數(shù)的圖象上,是否存在,且,使得、具有“性質(zhì)2018”,請說明理由.21.如圖,在三棱錐中,,分別為棱,上的三等份點,,.(1)求證:平面;(2)若,平面,求證:平面平面.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】
∵,∴.∴,即,∴,,故選B.【考點定位】向量的坐標運算2、C【解題分析】
過點且與點距離最大的直線滿足:,根據(jù)兩直線互相垂直,斜率的關(guān)系可以求出直線的斜率,寫出點斜式方程,最后化成一般方程,選出正確的選項.【題目詳解】因為過點且與點距離最大的直線滿足:,所以有,而,所以直線方程為,故本題選C.【題目點撥】本題考查了直線與直線垂直時斜率的性質(zhì),考查了數(shù)學(xué)運算能力.3、C【解題分析】
利用幾何概型的計算概率的方法解決本題,關(guān)鍵要弄準所求的隨機事件發(fā)生的區(qū)域的面積和事件總體的區(qū)域面積,通過相除的方法完成本題的解答.【題目詳解】解:由幾何概型的計算方法,可以得出所求事件的概率為P=.故選C.【點評】本題考查概率的計算,考查幾何概型的辨別,考查學(xué)生通過比例的方法計算概率的問題,考查學(xué)生分析問題解決問題的能力,考查學(xué)生幾何圖形面積的計算方法,屬于基本題型.4、A【解題分析】
作交于,連接設(shè),得,,進而,換元,得,通過求得的范圍即可求解【題目詳解】作交于,連接設(shè),則,∴取,∴.顯然易知令,,當(dāng)且僅當(dāng)?shù)忍柍闪ⅲ淮藭r∴故選A【題目點撥】本題考查圓的幾何性質(zhì),切線的應(yīng)用,弦長公式,考查函數(shù)最值得求解,考查換元思想,是難題5、D【解題分析】
由題意先設(shè)出三邊為則由三邊關(guān)系:兩短邊和大于第三邊,分公比大于與公式在小于兩類解出公比的取值范圍,此兩者的并集是函數(shù)的定義域,再由二次函數(shù)的性質(zhì)求出它的值域,選出正確選項.【題目詳解】解:設(shè)三邊:則由三邊關(guān)系:兩短邊和大于第三邊,即
(1)當(dāng)時,,即,解得;
(2)當(dāng)時,為最大邊,,即,解得,
綜合(1)(2)得:,
又的對稱軸是,故函數(shù)在上是減函數(shù),在上是增函數(shù),
由于時,與時,,
所以函數(shù)的值域為,故選:D.【題目點撥】本題考查等比數(shù)列的性質(zhì)及二次函數(shù)的值域的求法,解答本題關(guān)鍵是熟練掌握等比數(shù)列的性質(zhì),能利用它建立不等式解出公比的取值范圍得出函數(shù)的定義域,熟練掌握二次函數(shù)的性質(zhì)也很重要,由此類題可以看出,扎實的雙基,嫻熟的基礎(chǔ)知識與公式的記憶是解題的知識保障.6、B【解題分析】∵,∴,,,∴,∴點在第二象限,故選B.點睛:本題主要考查了由三角函數(shù)值的符號判斷角的終邊位置,屬于基礎(chǔ)題;三角函數(shù)值符號記憶口訣記憶技巧:一全正、二正弦、三正切、四余弦(為正).即第一象限全為正,第二象限正弦為正,第三象限正切為正,第四象限余弦為正.7、C【解題分析】
根據(jù)已知不等式可得,;根據(jù)各象限內(nèi)三角函數(shù)的符號可確定角所處的象限.【題目詳解】由知:,在第三象限故選:【題目點撥】本題考查三角函數(shù)在各象限內(nèi)的符號,屬于基礎(chǔ)題.8、D【解題分析】
,兩種情況對應(yīng)求解.【題目詳解】所以或故答案選D【題目點撥】本題考查了誘導(dǎo)公式,漏解是容易發(fā)生的錯誤.9、A【解題分析】
圓方程配方后求出圓心坐標和半徑,知圓心在已知直線上,代入圓心坐標得滿足的關(guān)系,用“1”的代換結(jié)合基本不等式求得的最小值.【題目詳解】圓標準方程為,圓心為,半徑為,直線被圓截得弦長為4,則圓心在直線上,∴,,又,∴,當(dāng)且僅當(dāng),即時等號成立.∴的最小值是1.故選:A.【題目點撥】本題考查用基本不等式求最值,解題時需根據(jù)直線與圓的位置關(guān)系求得的關(guān)系,然后用“1”的代換法把湊配出可用基本不等式的形式,從而可求得最值.10、A【解題分析】
建立平面直角坐標系,表示出點的坐標,利用向量坐標運算和平面向量的數(shù)量積的運算,求得最小值,即可求解.【題目詳解】由題意,以中點為坐標原點,建立如圖所示的坐標系,則,設(shè),則,所以,所以當(dāng)時,取得最小值為,故選A.【題目點撥】本題主要考查了平面向量數(shù)量積的應(yīng)用問題,根據(jù)條件建立坐標系,利用坐標法是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
先由題意,得到,求出,再由等差數(shù)列的性質(zhì),即可得出結(jié)果.【題目詳解】因為等差數(shù)列的前項和為,若,則,所以,因此.故答案為:【題目點撥】本題主要考查等差數(shù)列的性質(zhì)的應(yīng)用,熟記等差數(shù)列的求和公式,以及等差數(shù)列的性質(zhì)即可,屬于??碱}型.12、【解題分析】
先利用時,求出的值,再令,由得出,兩式相減可求出數(shù)列的通項公式,再將的表達式代入,可得出.【題目詳解】當(dāng)時,則有,;當(dāng)時,由得出,上述兩式相減得,,得且,所以,數(shù)列是以為首項,以為公比的等比數(shù)列,則,,那么,因此,,故答案為.【題目點撥】本題考查等比數(shù)列前項和與通項之間的關(guān)系,同時也考查了等比數(shù)列求和,一般在涉及與的遞推關(guān)系求通項時,常用作差法來求解,考查計算能力,屬于中等題.13、【解題分析】
由,知為圓的切線,所以兩圓外離,即圓心距大于兩半徑之和,代入方程即可?!绢}目詳解】由,知為圓的切線,即在圓上任意一點都可以向圓作切線,當(dāng)兩圓外離時,滿足條件,所以,,即,化簡,得:,解得:或.【題目點撥】和圓半徑所成夾角為,即是圓的切線,兩圓外離表示圓心距大于兩半徑之和。14、【解題分析】
取,代入計算得到答案.【題目詳解】,當(dāng)時故答案為【題目點撥】本題考查了前項和和通項的關(guān)系,取是解題的關(guān)鍵.15、【解題分析】分析:在已知遞推式兩邊同除以,可得新數(shù)列是等差數(shù)列,從而由等差數(shù)列通項公式求得,再得.詳解:∵,∴兩邊除以得,,即,∵,∴,∴是以為首項,以為公差的等差數(shù)列,∴,∴.故答案為.點睛:在求數(shù)列公式中,除直接應(yīng)用等差數(shù)列和等比數(shù)列的通項公式外,還有一種常用方法:對遞推式化簡變形,可構(gòu)造出新數(shù)列為等差數(shù)列或等比數(shù)列,再由等差(比)數(shù)列的通項公式求出結(jié)論.這是一種轉(zhuǎn)化與化歸思想,必須掌握.16、2【解題分析】
直接根據(jù)弧長公式,可得.【題目詳解】因為,所以,解得【題目點撥】本題主要考查弧長公式的應(yīng)用.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析【解題分析】
1)連結(jié)BD交AC于O,連結(jié)EO,由EO//PB可證PB//平面EA.(2)由側(cè)面PAD⊥底面ABCD,,可證,又PAD是正三角形,所以AE⊥平面PCD.(3)設(shè)N為AD中點,連接PN,則,可證PN⊥底面ABCD,所以要使PB⊥AC,只需NB⊥AC,由相似三角形可求得比值.【題目詳解】(1)連結(jié)BD交AC于O,連結(jié)EO,因為O,E分別為BD.PD的中點,所以EO//PB,,所以PB//平面EAC.(2)正三角形PAD中,E為PD的中點,所以,,又,所以,AE⊥平面PCD.(3)設(shè)N為AD中點,連接PN,則.又面PAD⊥底面ABCD,所以,PN⊥底面ABCD.所以,NB為PB在面ABCD上的射影.要使PB⊥AC,只需NB⊥AC,在矩形ABCD中,設(shè)AD=1,AB=x,由,得∽,解之得:,所以,當(dāng)時,PB⊥AC.【題目點撥】本題綜合考查線面平行的判定,線面垂直的判定,及探索性問題找異面直線垂直,第三問難度較大,需要把異面直線垂直轉(zhuǎn)化為射影垂直,即共面垂直問題.18、(1);(2)【解題分析】
(1)根據(jù)向量的數(shù)量積公式、二倍角公式及輔助角公式將化簡為,然后利用三角函數(shù)的性質(zhì),即可求得的單調(diào)減區(qū)間;(2)由(1)及可求得,由可得,再結(jié)合余弦定理即可求得,進而可得的周長.【題目詳解】解:(1)所以函數(shù)的單調(diào)遞減區(qū)間為:(2),,又因在中,,,設(shè)的三個內(nèi)角所對的邊分別為,又,且,,則,所以的周長為.【題目點撥】本題考查平面向量的數(shù)量積公式,三角函數(shù)的二倍角公式、輔助角公式和三角函數(shù)的性質(zhì),以及利用正弦定理、余弦定理解三角形,考查理解辨析能力及求解運算能力,屬于中檔題.19、(1)(2)【解題分析】
(1)不等式的解集為說明和1是的兩個實數(shù)根,運用韋達定理,可以求出實數(shù)的值;(2)不等式的解集為,只需,或即可,解不等式組求出實數(shù)的取值范圍.【題目詳解】(1)若關(guān)于的不等式的解集為,則和1是的兩個實數(shù)根,由韋達定理可得,求得.(2)若關(guān)于的不等式解集為,則,或,求得或,故實數(shù)的取值范圍為.【題目點撥】本題考查了已知一元二次不等式的解集求參問題,考查了數(shù)學(xué)運算能力20、(1)①具有“性質(zhì)2”,②不具有“性質(zhì)4”;(2);(3)存在.【解題分析】
(1)①根據(jù)題意需要判斷的真假即可②根據(jù)題意判斷是否成立即可得出結(jié)論;(2)根據(jù)具有性質(zhì)2可求出的范圍,由存在性問題成立轉(zhuǎn)化為,根據(jù)函數(shù)的性質(zhì)求最值即可求解.【題目詳解】(1)①因為,成立,所以,故,0具有“性質(zhì)2”②因為,設(shè),則設(shè),對稱軸為,所以函數(shù)在上單調(diào)遞減,當(dāng)時,,所以當(dāng)時,不恒成立,即不成立,故(),0不具有“性質(zhì)4”.(2)因為,1具有“性質(zhì)2”所以化簡得解得或.因為存在及,使得成立,所以存在及使即可.令,則,當(dāng)時,,所以在上是增函數(shù),所以時,,當(dāng)時,,故時,因為在上單調(diào)遞減,在上單調(diào)遞增,所以,故只需滿足即可,解得.(3)假設(shè)具有“性質(zhì)2018”,則,即證明在任意2019個互不相同的實數(shù)中,一定存在兩個實數(shù),滿足:.證明:由,令,由萬能公式知,將等分成2018個小區(qū)間,則這2019個數(shù)必然有兩個數(shù)落在同一個區(qū)間,令其為:,即,也就是說,在,,,這2019個數(shù)中,一定有兩個數(shù)滿足,即一
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人短期借款法律合同范本2025
- 萬畝良田聯(lián)產(chǎn)承包合同新政策
- 個人廠房租賃合同典范
- 產(chǎn)權(quán)清楚車位買賣合同細則
- 上海市房地產(chǎn)委托代理合同范本
- 食品調(diào)料采購合同
- 個人貸款借款合同模板
- 勞動合同管理制度7
- 個人借款合同書及還款細則
- 個人住宅購房合同條款及樣本
- 2025年全國科技活動周科普知識競賽試題庫及答案
- 工廠生產(chǎn)區(qū)清潔流程及安全規(guī)范
- 2024年全國職業(yè)院校技能大賽中職(酒店服務(wù)賽項)備賽試題庫(500題)
- 高速公路巡邏車司機勞動合同
- 2025中國大唐集團內(nèi)蒙古分公司招聘高頻重點提升(共500題)附帶答案詳解
- 中國古代文學(xué)史 馬工程課件(上)01總緒論
- GB/T 22085.1-2008電子束及激光焊接接頭缺欠質(zhì)量分級指南第1部分:鋼
- 上海中心大廈-介紹 課件
- 非酒精性脂肪性肝病防治指南解讀課件
- 地理微格教學(xué)課件
- 合成氨操作規(guī)程
評論
0/150
提交評論