版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
./第1講與有理數(shù)有關(guān)的概念考點(diǎn)·方法·破譯1.了解負(fù)數(shù)的產(chǎn)生過程,能夠用正、負(fù)數(shù)表示具有相反意義的量.2.會(huì)進(jìn)行有理的分類,體會(huì)并運(yùn)用數(shù)學(xué)中的分類思想.3.理解數(shù)軸、相反數(shù)、絕對值、倒數(shù)的意義.會(huì)用數(shù)軸比較兩個(gè)有理數(shù)的大小,會(huì)求一個(gè)數(shù)的相反數(shù)、絕對值、倒數(shù).經(jīng)典·考題·賞析[例1]寫出下列各語句的實(shí)際意義⑴向前-7米⑵收人-50元⑶體重增加-3千克[解法指導(dǎo)]用正、負(fù)數(shù)表示實(shí)際問題中具有相反意義的量.而相反意義的量包合兩個(gè)要素:一是它們的意義相反.二是它們具有數(shù)量.而且必須是同類兩,如"向前與自后、收入與支出、增加與減少等等"解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶體重增加-3千克表示體重減小3千克.[變式題組]01.如果+10%表示增加10%,那么減少8%可以記作〔A.-18%B.-8%C.+2%D.+8%02.〔XX如果+3噸表示運(yùn)入倉庫的大米噸數(shù),那么運(yùn)出5噸大米表示為<>A.-5噸B.+5噸C.-3噸D.+3噸03.〔XX北京與紐約的時(shí)差-13〔負(fù)號表示同一時(shí)刻紐約時(shí)間比北京晚.如現(xiàn)在是北京時(shí)間l5:00,紐約時(shí)問是____[例2]在-eq\f<22,7>,π,這四個(gè)數(shù)中有理數(shù)的個(gè)數(shù)〔>A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)[解法指導(dǎo)]有理數(shù)的分類:⑴按正負(fù)性分類,有理數(shù);按整數(shù)、分?jǐn)?shù)分類,有理數(shù);其中分?jǐn)?shù)包括有限小數(shù)和無限循環(huán)小數(shù),因?yàn)棣校?.1415926…是無限不循環(huán)小數(shù),它不能寫成分?jǐn)?shù)的形式,所以π不是有理數(shù),-eq\f<22,7>是分?jǐn)?shù)是無限循環(huán)小數(shù)可以化成分?jǐn)?shù)形式,0是整數(shù),所以都是有理數(shù),故選C.[變式題組]01.在7,0.15,-eq\f<1,2>,-301.31.25,-eq\f<1,8>,100.l,-3001中,負(fù)分?jǐn)?shù)為,整數(shù)為,正整數(shù).02.〔XXXX請把下列各數(shù)填入圖中適當(dāng)位置15,-eq\f<1,9>,eq\f<2,15>,-eq\f<13,8>,0.1.-5.32,123,2.333[例3]〔XX有一列數(shù)為-1,eq\f<1,2>,-eq\f<1,3>,eq\f<1,4>.-eq\f<1,5>,eq\f<1,6>,…,找規(guī)律到第2007個(gè)數(shù)是.[解法指導(dǎo)]從一系列的數(shù)中發(fā)現(xiàn)規(guī)律,首先找出不變量和變量,再依變量去發(fā)現(xiàn)規(guī)律.擊歸納去猜想,然后進(jìn)行驗(yàn)證.解本題會(huì)有這樣的規(guī)律:⑴各數(shù)的分子部是1;⑵各數(shù)的分母依次為1,2,3,4,5,6,…⑶處于奇數(shù)位置的數(shù)是負(fù)數(shù),處于偶數(shù)位置的數(shù)是正數(shù),所以第2007個(gè)數(shù)的分子也是1.分母是2007,并且是一個(gè)負(fù)數(shù),故答案為-eq\f<1,2007>.[變式題組]01.〔XXXX數(shù)學(xué)解密:第一個(gè)數(shù)是3=2+1,第二個(gè)數(shù)是5=3+2,第三個(gè)數(shù)是9=5+4,第四十?dāng)?shù)是17=9+8…觀察并精想第六個(gè)數(shù)是.02.〔XX畢選哥拉斯學(xué)派發(fā)明了一種"馨折形"填數(shù)法,如圖則?填____.03.〔茂名有一組數(shù)l,2,5,10,17,26…請觀察規(guī)律,則第8個(gè)數(shù)為____.[例4]〔20XXXXXX若l+eq\f<m,2>eq\f<,>的相反數(shù)是-3,則m的相反數(shù)是____.[解法指導(dǎo)]理解相反數(shù)的代數(shù)意義和幾何意義,代數(shù)意義只有符號不同的兩個(gè)數(shù)叫互為相反數(shù).幾何意義:在數(shù)軸上原點(diǎn)的兩旁且離原點(diǎn)的距離相等的兩個(gè)點(diǎn)所表示的數(shù)叫互為相反數(shù),本題eq\f<m,2>=-4,m=-8[變式題組]01.〔XXXX-5的相反數(shù)是<>A.5B.eq\f<1,5>C.-5D.-eq\f<1,5>02.已知a與b互為相反數(shù),c與d互為倒數(shù),則a+b+cd=______03.如圖為一個(gè)正方體紙盒的展開圖,若在其中的三個(gè)正方形A、B、C內(nèi)分別填人適當(dāng)?shù)臄?shù),使得它們折成正方體.若相對的面上的兩個(gè)數(shù)互為相反數(shù),則填人正方形A、B、C內(nèi)的三個(gè)數(shù)依次為<>A.-1,2,0B.0,-2,1C.-2,0,1D.2,1,0[例5]〔XXa、b為有理數(shù),且a>0,b<0,|b|>a,則a,b、-a,-b的大小順序是<>A.b<-a<a<-bB.–a<b<a<-bC.–b<a<-a<bD.–a<a<-b<b[解法指導(dǎo)]理解絕對值的幾何意義:一個(gè)數(shù)的絕對值就是數(shù)軸上表示a的點(diǎn)到原點(diǎn)的距離,即|a|,用式子表示為|a|=.本題注意數(shù)形結(jié)合思想,畫一條數(shù)軸標(biāo)出a、b,依相反數(shù)的意義標(biāo)出-b,-a,故選A.[變式題組]01.推理①若a=b,則|a|=|b|;②若|a|=|b|,則a=b;③若a≠b,則|a|≠|(zhì)b|;④若|a|≠|(zhì)b|,則a≠b,其中正確的個(gè)數(shù)為〔A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)02.a(chǎn)、b、c三個(gè)數(shù)在數(shù)軸上的位置如圖,則eq\f<|a|,a>+eq\f<|b|,b>+eq\f<|c|,c>=.03.a(chǎn)、b、c為不等于O的有理散,則eq\f<a,|a|>+eq\f<b,|b|>+eq\f<c,|c|>的值可能是____.[例6]〔XX課改已知|a-4|+|b-8|=0,則eq\f<a+b,ab>的值.[解法指導(dǎo)]本題主要考查絕對值概念的運(yùn)用,因?yàn)槿魏斡欣頂?shù)a的絕對值都是非負(fù)數(shù),即|a|≥0.所以|a-4|≥0,|b-8|≥0.而兩個(gè)非負(fù)數(shù)之和為0,則兩數(shù)均為0.解:因?yàn)閨a-4|≥0,|b-8|≥0,又|a-4|+|b-8|=0,∴|a-4|=0,|b-8|=0即a-4=0,b-8=0,a=4,b=8.故eq\f<a+b,ab>=eq\f<12,32>=eq\f<3,8>[變式題組]01.已知|a|=1,|b|=2,|c|=3,且a>b>c,求a+b+C.02.〔XX若|m-3|+|n+2|=0,則m+2n的值為<>A.-4B.-1C.0D.403.已知|a|=8,|b|=2,且|a-b|=b-a,求a和b的值[例7]〔第l8屆迎春杯已知<m+n>2+|m|=m,且|2m-n-2|=0.求mn的值.[解法指導(dǎo)]本例關(guān)鍵是通過分析<m+n>2+|m|的符號,挖掘出m的符號特征,從而把問題轉(zhuǎn)化為<m+n>2=0,|2m-n-2|=0,找到解題途徑.解:∵<m+n>2≥0,|m|≥O∴<m+n>2+|m|≥0,而<m+n>2+|m|=m∴m≥0,∴<m+n>2+m=m,即<m+n>2=0∴m+n=O①又∵|2m-n-2|=0∴2m-n-2=0②由①②得m=eq\f<2,3>,n=-eq\f<2,3>,∴mn=-eq\f<4,9>[變式題組]01.已知<a+b>2+|b+5|=b+5且|2a-b–l|=0,求a-B.02.〔第16屆迎春杯已知y=|x-a|+|x+19|+|x-a-96|,如果19<a<96.a(chǎn)≤x≤96,求y的最大值.演練鞏固·反饋提高01.觀察下列有規(guī)律的數(shù)eq\f<1,2>,eq\f<1,6>,eq\f<1,12>,eq\f<1,20>,eq\f<1,30>,eq\f<1,42>…根據(jù)其規(guī)律可知第9個(gè)數(shù)是<>A.eq\f<1,56>B.eq\f<1,72>C.eq\f<1,90>D.eq\f<1,110>02.〔XX-6的絕對值是<>A.6B.-6C.eq\f<1,6>D.-eq\f<1,6>03.在-eq\f<22,7>,π,8.四個(gè)數(shù)中,有理數(shù)的個(gè)數(shù)為<>A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)04.若一個(gè)數(shù)的相反數(shù)為a+b,則這個(gè)數(shù)是<>A.a(chǎn)-bB.b-aC.–a+bD.–a-b05.?dāng)?shù)軸上表示互為相反數(shù)的兩點(diǎn)之間距離是6,這兩個(gè)數(shù)是<>A.0和6B.0和-6C.3和-3D.0和306.若-a不是負(fù)數(shù),則a<>A.是正數(shù)B.不是負(fù)數(shù)C.是負(fù)數(shù)D.不是正數(shù)07.下列結(jié)論中,正確的是<>①若a=b,則|a|=|b|②若a=-b,則|a|=|b|③若|a|=|b|,則a=-b④若|a|=|b|,則a=bA.①②B.③④C.①④D.②③08.有理數(shù)a、b在數(shù)軸上的對應(yīng)點(diǎn)的位置如圖所示,則a、b,-a,|b|的大小關(guān)系正確的是<>A.|b|>a>-a>bB.|b|>b>a>-aC.a(chǎn)>|b|>b>-aD.a(chǎn)>|b|>-a>b09.一個(gè)數(shù)在數(shù)軸上所對應(yīng)的點(diǎn)向右移動(dòng)5個(gè)單位后,得到它的相反數(shù)的對應(yīng)點(diǎn),則這個(gè)數(shù)是____.10.已知|x+2|+|y+2|=0,則xy=____.11.a(chǎn)、b、c三個(gè)數(shù)在數(shù)軸上的位置如圖,求eq\f<|a|,a>+eq\f<|b|,b>+eq\f<|abc|,abc>+eq\f<|c|,c>12.若三個(gè)不相等的有理數(shù)可以表示為1、a、a+b也可以表示成0、b、eq\f<b,a>的形式,試求a、b的值.13.已知|a|=4,|b|=5,|c|=6,且a>b>c,求a+b-C.14.|a|具有非負(fù)性,也有最小值為0,試討論:當(dāng)x為有理數(shù)時(shí),|x-l|+|x-3|有沒有最小值,如果有,求出最小值;如果沒有,說明理由.15.點(diǎn)A、B在數(shù)軸上分別表示實(shí)數(shù)a、b,A、B兩點(diǎn)之間的距離表示為|AB|.當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),不妨設(shè)點(diǎn)A在原點(diǎn),如圖1,|AB|=|OB|=|b|=|a-b|
當(dāng)A、B兩點(diǎn)都不在原點(diǎn)時(shí)有以下三種情況:
①如圖2,點(diǎn)A、B都在原點(diǎn)的右邊|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;
②如圖3,點(diǎn)A、B都在原點(diǎn)的左邊,|AB|=|OB|-|OA|=|b|-|a|=-b-<-a>=|a-b|;③如圖4,點(diǎn)A、B在原點(diǎn)的兩邊,|AB|=|OB|-|OA|=|b|-|a|=-b-〔-a=|a-b|;
綜上,數(shù)軸上A、B兩點(diǎn)之間的距離|AB|=|a-b|.回答下列問題:⑴數(shù)軸上表示2和5的兩點(diǎn)之間的距離是,數(shù)軸上表示-2和-5的兩點(diǎn)之間的距離是,,數(shù)軸上表示1和-3的兩點(diǎn)之間的距離是;⑵數(shù)軸上表示x和-1的兩點(diǎn)分別是點(diǎn)A和B,則A、B之間的距離是,如果|AB|=2,那么x=;⑶當(dāng)代數(shù)式|x+1|+|x-2|取最小值時(shí),相應(yīng)的x的取值范圍是.培優(yōu)升級·奧賽檢測01.〔XX市競賽題在數(shù)軸上任取一條長度為1999eq\f<1,9>的線段,則此線段在這條數(shù)軸上最多能蓋住的整數(shù)點(diǎn)的個(gè)數(shù)是<>A.1998B.1999C.2000D.200102.〔第l8屆希望杯邀請賽試題在數(shù)軸上和有理數(shù)a、b、c對應(yīng)的點(diǎn)的位置如圖所示,有下列四個(gè)結(jié)論:①abc<0;②|a-b|+|b-c|=|a-c|;③〔a-b<b-c><c-a>>0;④|a|<1-bc.其中正確的結(jié)論有<>A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)03.如果a、b、c是非零有理數(shù),且a+b+c=0.那么eq\f<a,|a|>+eq\f<b,|b|>+eq\f<c,|c|>+eq\f<abc,|abc|>的所有可能的值為〔A.-1B.1或-1C.2或-2D.0或-204.已知|m|=-m,化簡|m-l|-|m-2|所得結(jié)果<>A.-1B.1C.2m-3D.3-2m05.如果0<p<15,那么代數(shù)式|x-p|+|x-15|+|x-p-15|在p≤x≤15的最小值<>A.30B.0C.15D.一個(gè)與p有關(guān)的代數(shù)式06.|x+1|+|x-2|+|x-3|的最小值為.07.若a>0,b<0,使|x-a|+|x-b|=a-b成立的x取值范圍.08.〔XX市選拔賽試題非零整數(shù)m、n滿足|m|+|n|-5=0所有這樣的整數(shù)組<m,n>共有組09.若非零有理數(shù)m、n、p滿足eq\f<|m|,m>+eq\f<|n|,n>+eq\f<|p|,p>=1.則eq\f<2mnp,|3mnp|>=.10.〔19屆希望杯試題試求|x-1|+|x-2|+|x-3|+…+|x-1997|的最小值.11.已知<|x+l|+|x-2|>〔|y-2|+|y+1|〔|z-3|+|z+l|=36,求x+2y+3的最大值和最小值.12.電子跳蚤落在數(shù)軸上的某點(diǎn)k0,第一步從k0向左跳1個(gè)單位得k1,第二步由k1向右跳2個(gè)單位到k2,第三步由k2向左跳3個(gè)單位到k3,第四步由k3向右跳4個(gè)單位到k4…按以上規(guī)律跳100步時(shí),電子跳蚤落在數(shù)軸上的點(diǎn)k100新表示的數(shù)恰好19.94,試求k0所表示的數(shù).13.某城鎮(zhèn),沿環(huán)形路上依次排列有五所小學(xué),它們順扶有電腦15臺(tái)、7臺(tái)、1l臺(tái)、3臺(tái),14臺(tái),為使各學(xué)校里電腦數(shù)相同,允許一些小學(xué)向相鄰小學(xué)調(diào)出電腦,問怎樣調(diào)配才能使調(diào)出的電腦總臺(tái)數(shù)最?。坎⑶蟪稣{(diào)出電腦的最少總臺(tái)數(shù).第02講有理數(shù)的加減法考點(diǎn)·方法·破譯1.理解有理數(shù)加法法則,了解有理數(shù)加法的實(shí)際意義.2.準(zhǔn)確運(yùn)用有理數(shù)加法法則進(jìn)行運(yùn)算,能將實(shí)際問題轉(zhuǎn)化為有理數(shù)的加法運(yùn)算.3.理解有理數(shù)減法與加法的轉(zhuǎn)換關(guān)系,會(huì)用有理數(shù)減法解決生活中的實(shí)際問題.4.會(huì)把加減混合運(yùn)算統(tǒng)一成加法運(yùn)算,并能準(zhǔn)確求和.經(jīng)典·考題·賞析[例1]〔XXXX某天股票A開盤價(jià)18元,上午11:30跌了1.5元,下午收盤時(shí)又漲了0.3元,則股票A這天的收盤價(jià)為〔A.0.3元 B.16.2元 C.16.8元 D.18元[解法指導(dǎo)]將實(shí)際問題轉(zhuǎn)化為有理數(shù)的加法運(yùn)算時(shí),首先將具有相反意義的量確定一個(gè)為正,另一個(gè)為負(fù),其次在計(jì)算時(shí)正確選擇加法法則,是同號相加,取相同符號并用絕對值相加,是異號相加,取絕對值較大符號,并用較大絕對值減去較小絕對值.解:18+〔-1.5+〔0.3=16.8,故選C.[變式題組]01.今年XX省元月份某一天的天氣預(yù)報(bào)中,XX市最低氣溫為-6℃,XX市最低氣溫2℃,這一天XX市的最低氣溫比XX低〔A.8℃B.-8℃C.6℃D.2℃02.〔XX飛機(jī)的高度為2400米,上升250米,又下降了327米,這是飛機(jī)的高度為__________03.〔XX珠穆朗瑪峰海拔8848m,吐魯番海拔高度為-155m,則它們的平均海拔高度為__________[例2]計(jì)算〔-83+〔+26+〔-17+〔-26+〔+15[解法指導(dǎo)]應(yīng)用加法運(yùn)算簡化運(yùn)算,-83與-17相加可得整百的數(shù),+26與-26互為相反數(shù),相加為0,有理數(shù)加法常見技巧有:⑴互為相反數(shù)結(jié)合一起;⑵相加得整數(shù)結(jié)合一起;⑶同分母的分?jǐn)?shù)或容易通分的分?jǐn)?shù)結(jié)合一起;⑷相同符號的數(shù)結(jié)合一起.解:〔-83+〔+26+〔-17+〔-26+〔+15=[〔-83+〔-17]+[〔+26+〔-26]+15=〔-100+15=-85[變式題組]01.〔-2.5+〔-3+〔-1+〔-102.〔-13.6+0.26+〔-2.7+〔-1.0603.0.125+3+〔-3+11+〔-0.25[例3]計(jì)算[解法指導(dǎo)]依進(jìn)行裂項(xiàng),然后鄰項(xiàng)相消進(jìn)行化簡求和.解:原式====[變式題組]01.計(jì)算1+〔-2+3+〔-4+…+99+〔-10002.如圖,把一個(gè)面積為1的正方形等分成兩個(gè)面積為的長方形,接著把面積為的長方形等分成兩個(gè)面積為的正方形,再把面積為的正方形等分成兩個(gè)面積為的長方形,如此進(jìn)行下去,試?yán)脠D形揭示的規(guī)律計(jì)算=__________.[例4]如果a<0,b>0,a+b<0,那么下列關(guān)系中正確的是〔A.a(chǎn)>b>-b>-aB.a(chǎn)>-a>b>-bC.b>a>-b>-aD.-a>b>-b>a[解法指導(dǎo)]緊扣有理數(shù)加法法則,由兩加數(shù)及其和的符號,確定兩加數(shù)的絕對值的大小,然后根據(jù)相反數(shù)的關(guān)系將它們在同一數(shù)軸上表示出來,即可得出結(jié)論.解:∵a<0,b>0,∴a+b是異號兩數(shù)之和又a+b<0,∴a、b中負(fù)數(shù)的絕對值較大,∴|a|>|b|將a、b、-a、-b表示在同一數(shù)軸上,如圖,則它們的大小關(guān)系是-a>b>-b>a[變式題組]01.若m>0,n<0,且|m|>|n|,則m+n________0.〔填>、<號02.若m<0,n>0,且|m|>|n|,則m+n________0.〔填>、<號03.已知a<0,b>0,c<0,且|c|>|b|>|a|,試比較a、b、c、a+b、a+c的大小[例5]4-〔-33-〔-1.6-〔-21[解法指導(dǎo)]有理數(shù)減法的運(yùn)算步驟:⑴依有理數(shù)的減法法則,把減號變?yōu)榧犹?并把減數(shù)變?yōu)樗南喾磾?shù);⑵利用有理數(shù)的加法法則進(jìn)行運(yùn)算.解:4-〔-33-〔-1.6-〔-21=4+33+1.6+21=4.4+1.6+〔33+21=6+55=61[變式題組]01.02.4-〔+3.85-〔-3+〔-3.1503.178-87.21-〔-43+153-12.79[例6]試看下面一列數(shù):25、23、21、19…⑴觀察這列數(shù),猜想第10個(gè)數(shù)是多少?第n個(gè)數(shù)是多少?⑵這列數(shù)中有多少個(gè)數(shù)是正數(shù)?從第幾個(gè)數(shù)開始是負(fù)數(shù)?⑶求這列數(shù)中所有正數(shù)的和.[解法指導(dǎo)]尋找一系列數(shù)的規(guī)律,應(yīng)該從特殊到一般,找到前面幾個(gè)數(shù)的規(guī)律,通過觀察推理、猜想出第n個(gè)數(shù)的規(guī)律,再用其它的數(shù)來驗(yàn)證.解:⑴第10個(gè)數(shù)為7,第n個(gè)數(shù)為25-2<n-1>⑵∵n=13時(shí),25-2<13-1>=1,n=14時(shí),25-2<14-1>=-1故這列數(shù)有13個(gè)數(shù)為正數(shù),從第14個(gè)數(shù)開始就是負(fù)數(shù).⑶這列數(shù)中的正數(shù)為25,23,21,19,17,15,13,11,9,7,5,3,1,其和=〔25+1+〔23+3+…+〔15+11+13=26×6+13=169[變式題組]01.<XX>觀察下列等式1-=,2-=,3-=,4-=…依你發(fā)現(xiàn)的規(guī)律,解答下列問題.⑴寫出第5個(gè)等式;⑵第10個(gè)等式右邊的分?jǐn)?shù)的分子與分母的和是多少?02.觀察下列等式的規(guī)律9-1=8,16-4=12,25-9=16,36-16=20⑴用關(guān)于n〔n≥1的自然數(shù)的等式表示這個(gè)規(guī)律;⑵當(dāng)這個(gè)等式的右邊等于2008時(shí)求n.[例7]〔第十屆希望杯競賽試題求+〔++〔+++〔++++…+〔++…++[解法指導(dǎo)]觀察式中數(shù)的特點(diǎn)發(fā)現(xiàn):若括號內(nèi)在加上相同的數(shù)均可合并成1,由此我們采取將原式倒序后與原式相加,這樣極大簡化計(jì)算了.解:設(shè)S=+〔++〔+++…+〔++…++則有S=+〔++〔+++…+〔++…++將原式和倒序再相加得2S=++〔++++〔++++++…+〔++…+++++…++即2S=1+2+3+4+…+49==1225∴S=[變式題組]01.計(jì)算2-22-23-24-25-26-27-28-29+21002.〔第8屆希望杯試題計(jì)算〔1---…-〔+++…++-〔1---…-〔+++…+演練鞏固·反饋提高01.m是有理數(shù),則m+|m|〔A.可能是負(fù)數(shù) B.不可能是負(fù)數(shù) C.比是正數(shù) D.可能是正數(shù),也可能是負(fù)數(shù)02.如果|a|=3,|b|=2,那么|a+b|為〔A. 5 B.1 C.1或5 D.±1或±503.在1,-1,-2這三個(gè)數(shù)中,任意兩數(shù)之和的最大值是〔A. 1 B.0 C.-1 D.-304.兩個(gè)有理數(shù)的和是正數(shù),下面說法中正確的是〔A.兩數(shù)一定都是正數(shù) B.兩數(shù)都不為0 C.至少有一個(gè)為負(fù)數(shù) D.至少有一個(gè)為正數(shù)05.下列等式一定成立的是〔A.|x|-x=0 B.-x-x=0 C.|x|+|-x|=0 D.|x|-|x|=006.一天早晨的氣溫是-6℃,中午又上升了10℃,午間又下降了8℃,則午夜氣溫是〔A.-4℃B.4℃C.-3℃D.-5℃07.若a<0,則|a-<-a>|等于〔A.-aB.0 C.2aD.-2a08.設(shè)x是不等于0的有理數(shù),則值為〔A.0或1 B.0或2 C.0或-1 D.0或-209.〔XX2+<-2>的值為__________10.用含絕對值的式子表示下列各式:⑴若a<0,b>0,則b-a=__________,a-b=__________⑵若a>b>0,則|a-b|=__________⑶若a<b<0,則a-b=__________11.計(jì)算下列各題:⑴23+〔-27+9+5 ⑵-5.4+0.2-0.6+0.35-0.25⑶-0.5-3+2.75-7⑷33.1-10.7-〔-22.9-|-|12.計(jì)算1-3+5-7+9-11+…+97-9913.某檢修小組乘汽車沿公路檢修線路,規(guī)定前進(jìn)為正,后退為負(fù),某天從A地出發(fā)到收工時(shí)所走的路線〔單位:千米為:+10,-3,+4,-2,-8,+13,-7,+12,+7,+5⑴問收工時(shí)距離A地多遠(yuǎn)?⑵若每千米耗油0.2千克,問從A地出發(fā)到收工時(shí)共耗油多少千克?14.將1997減去它的,再減去余下的,再減去余下的,再減去余下的……以此類推,直到最后減去余下的,最后的得數(shù)是多少?15.獨(dú)特的埃及分?jǐn)?shù):埃及同中國一樣,也是世界著名的文明古國,古代埃及人處理分?jǐn)?shù)與眾不同,他們一般只使用分子為1的分?jǐn)?shù),例如+來表示,用++表示等等.現(xiàn)有90個(gè)埃及分?jǐn)?shù):,,,,…,,你能從中挑出10個(gè),加上正、負(fù)號,使它們的和等于-1嗎?培優(yōu)升級·奧賽檢測01.〔第16屆希望杯邀請賽試題等于〔A.B.C.D.02.自然數(shù)a、b、c、d滿足+++=1,則+++等于〔A.B.C.D.03.〔第17屆希望杯邀請賽試題a、b、c、d是互不相等的正整數(shù),且abcd=441,則a+b+c+d值是〔A.30 B.32 C.34 D.3604.〔第7屆希望杯試題若a=,b=,c=,則a、b、c大小關(guān)系是〔A.a(chǎn)<b<cB.b<c<aC.c<b<aD.a(chǎn)<c<b05.的值得整數(shù)部分為〔A.1 B.2 C.3 D.406.<-2>2004+3×<-2>2003的值為〔A.-22003B.22003C.-22004D.2200407.〔希望杯邀請賽試題若|m|=m+1,則<4m+1>2004=__________08.+〔++〔+++…+〔++…+=__________09.=__________10.1+2-22-23-24-25-26-27-28-29+210=__________11.求32001×72002×132003所得數(shù)的末位數(shù)字為__________12.已知<a+b>2+|b+5|=b+5,且|2a-b-1|=0,求aB.13.計(jì)算<-1><-1><-1>…<-1><-1>14.請你從下表歸納出13+23+33+43+…+n3的公式并計(jì)算出13+23+33+43+…+1003的值.第03講有理數(shù)的乘除、乘方考點(diǎn)·方法·破譯1.理解有理數(shù)的乘法法則以及運(yùn)算律,能運(yùn)用乘法法則準(zhǔn)確地進(jìn)行有理數(shù)的乘法運(yùn)算,會(huì)利用運(yùn)算律簡化乘法運(yùn)算.2.掌握倒數(shù)的概念,會(huì)運(yùn)用倒數(shù)的性質(zhì)簡化運(yùn)算.3.了解有理數(shù)除法的意義,掌握有理數(shù)的除法法則,熟練進(jìn)行有理數(shù)的除法運(yùn)算.4.掌握有理數(shù)乘除法混合運(yùn)算的順序,以及四則混合運(yùn)算的步驟,熟練進(jìn)行有理數(shù)的混合運(yùn)算.5.理解有理數(shù)乘方的意義,掌握有理數(shù)乘方運(yùn)算的符號法則,進(jìn)一步掌握有理數(shù)的混合運(yùn)算.經(jīng)典·考題·賞析[例1]計(jì)算⑴⑵⑶⑷⑸[解法指導(dǎo)]掌握有理數(shù)乘法法則,正確運(yùn)用法則,一是要體會(huì)并掌握乘法的符號規(guī)律,二是細(xì)心、穩(wěn)妥、層次清楚,即先確定積的符號,后計(jì)算絕對值的積.解:⑴⑵⑶⑷⑸[變式題組]01.⑴⑵⑶⑷⑸02.3.04.[例2]已知兩個(gè)有理數(shù)a、b,如果ab<0,且a+b<0,那么〔A.a(chǎn)>0,b<0B.a(chǎn)<0,b>0C.a(chǎn)、b異號D.a(chǎn)、b異號且負(fù)數(shù)的絕對值較大[解法指導(dǎo)]依有理數(shù)乘法法則,異號為負(fù),故a、b異號,又依加法法則,異號相加取絕對值較大數(shù)的符號,可得出判斷.解:由ab<0知a、b異號,又由a+b<0,可知異號兩數(shù)之和為負(fù),依加法法則得負(fù)數(shù)的絕對值較大,選D.[變式題組]01.若a+b+c=0,且b<c<0,則下列各式中,錯(cuò)誤的是〔A.a(chǎn)+b>0B.b+c<0C.a(chǎn)b+ac>0D.a(chǎn)+bc>002.已知a+b>0,a-b<0,ab<0,則a___________0,b___________0,|a|___________|b|.03.<XXXX>如果a+b<0,,則下列結(jié)論成立的是〔A.a(chǎn)>0,b>0B.a(chǎn)<0,b<0C.a(chǎn)>0,b<0D.a(chǎn)<0,b>004.<XX>下列命題正確的是〔A.若ab>0,則a>0,b>0B.若ab<0,則a<0,b<0C.若ab=0,則a=0或b=0D.若ab=0,則a=0且b=0[例3]計(jì)算⑴⑵⑶⑷[解法指導(dǎo)]進(jìn)行有理數(shù)除法運(yùn)算時(shí),若不能整除,應(yīng)用法則1,先把除法轉(zhuǎn)化成乘法,再確定符號,然后把絕對值相乘,要注意除法與乘法互為逆運(yùn)算.若能整除,應(yīng)用法則2,可直接確定符號,再把絕對值相除.解:⑴⑵⑶⑷[變式題組]01.⑴⑵⑶⑷02.⑴⑵⑶03.[例4]〔茂名若實(shí)數(shù)a、b滿足,則=___________.[解法指導(dǎo)]依絕對值意義進(jìn)行分類討論,得出a、b的取值范圍,進(jìn)一步代入結(jié)論得出結(jié)果.解:當(dāng)ab>0,;當(dāng)ab<0,,∴ab<0,從而=-1.[變式題組]01.若k是有理數(shù),則<|k|+k>÷k的結(jié)果是〔A.正數(shù)B.0C.負(fù)數(shù)D.非負(fù)數(shù)02.若A.b都是非零有理數(shù),那么的值是多少?03.如果,試比較與的大小.[例5]已知⑴求的值;⑵求的值.[解法指導(dǎo)]表示n個(gè)a相乘,根據(jù)乘方的符號法則,如果a為正數(shù),正數(shù)的任何次冪都是正數(shù),如果a是負(fù)數(shù),負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù).解:∵⑴當(dāng)時(shí),當(dāng)時(shí),⑵當(dāng)時(shí),當(dāng)時(shí),[變式題組]01.〔北京若,則的值是___________.02.已知x、y互為倒數(shù),且絕對值相等,求的值,這里n是正整數(shù).[例6]〔XX20XX我省為135萬名農(nóng)村中小學(xué)生免費(fèi)提供教科書,減輕了農(nóng)民的負(fù)擔(dān),135萬用科學(xué)記數(shù)法表示為〔A.0.135×106B.1.35×106C.0.135×107D.1.35×107[解法指導(dǎo)]將一個(gè)數(shù)表示為科學(xué)記數(shù)法的a×10n的形式,其中a的整數(shù)位數(shù)是1位.故答案選B.[變式題組]01.〔XXXX市今年約有103000名學(xué)生參加中考,103000用科學(xué)記數(shù)法表示為〔A.1.03×105B.0.103×105C.10.3×104D.103×10302.〔XXXX市計(jì)劃從20XX到20XX新增林地面積253萬畝,253萬畝用科學(xué)記數(shù)法表示正確的是〔A.25.3×105畝B.2.53×106畝C.253×104畝D.2.53×107畝[例7]〔上海競賽[解法指導(dǎo)]找出的通項(xiàng)公式=原式====99[變式題組]A.B.C.D.02.〔第10屆希望杯試題已知求的值.演練鞏固·反饋提高01.三個(gè)有理數(shù)相乘,積為負(fù)數(shù),則負(fù)因數(shù)的個(gè)數(shù)為〔A.1個(gè)B.2個(gè)C.3個(gè)D.1個(gè)或3個(gè)02.兩個(gè)有理數(shù)的和是負(fù)數(shù),積也是負(fù)數(shù),那么這兩個(gè)數(shù)〔A.互為相反數(shù)B.其中絕對值大的數(shù)是正數(shù),另一個(gè)是負(fù)數(shù)C.都是負(fù)數(shù)D.其中絕對值大的數(shù)是負(fù)數(shù),另一個(gè)是正數(shù)03.已知abc>0,a>0,ac<0,則下列結(jié)論正確的是〔A.b<0,c>0B.b>0,c<0C.b<0,c<0D.b>0,c>004.若|ab|=ab,則〔A.a(chǎn)b>0B.a(chǎn)b≥0C.a(chǎn)<0,b<0D.a(chǎn)b<005.若a、b互為相反數(shù),c、d互為倒數(shù),m的絕對值為2,則代數(shù)式的值為〔A.-3B.1C.±3D.-3或106.若a>,則a的取值范圍〔A.a(chǎn)>1B.0<a<1C.a(chǎn)>-1D.-1<a<0或a>107.已知a、b為有理數(shù),給出下列條件:①a+b=0;②a-b=0;③ab<0;④,其中能判斷a、b互為相反數(shù)的個(gè)數(shù)是〔A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)08.若ab≠0,則的取值不可能為〔A.0B.1C.2D.-209.的值為〔A.-2B.<-2>21C.0D.-21010.<XX>20XX一季度,全國城鎮(zhèn)新增就業(yè)人數(shù)289萬人,用科學(xué)記數(shù)法表示289萬正確的是〔A.2.89×107B.2.89×106C.2.89×105D.2.89×10411.已知4個(gè)不相等的整數(shù)a、b、c、d,它們的積abcd=9,則a+b+c+d=___________.12.〔n為自然數(shù)=___________.13.如果,試比較與xy的大小.14.若a、b、c為有理數(shù)且,求的值.15.若a、b、c均為整數(shù),且.求的值.培優(yōu)升級·奧賽檢測01.已知有理數(shù)x、y、z兩兩不相等,則中負(fù)數(shù)的個(gè)數(shù)是〔A.1個(gè)B.2個(gè)C.3個(gè)D.0個(gè)或2個(gè)02.計(jì)算歸納各計(jì)算結(jié)果中的個(gè)位數(shù)字規(guī)律,猜測的個(gè)位數(shù)字是〔A.1B.3C.7D.503.已知,下列判斷正確的是〔A.a(chǎn)bcde<0B.a(chǎn)b2cd4e<0C.a(chǎn)b2cde<0D.a(chǎn)bcd4e<004.若有理數(shù)x、y使得這四個(gè)數(shù)中的三個(gè)數(shù)相等,則|y|-|x|的值是〔A.B.0C.D.05.若A=,則A-1996的末位數(shù)字是〔A.0B.1C.7D.906.如果,則的值是〔A.2B.1C.0D.-107.已知,則a、b、c、d大小關(guān)系是〔A.a(chǎn)>b>c>dB.a(chǎn)>b>d>cC.b>a>c>dD.a(chǎn)>d>b>c08.已知a、b、c都不等于0,且的最大值為m,最小值為n,則=___________.09.〔第13屆"華杯賽"試題從下面每組數(shù)中各取一個(gè)數(shù)將它們相乘,那么所有這樣的乘積的總和是___________.第一組:第二組:第三組:10.一本書的頁碼從1記到n,把所有這些頁碼加起來,其中有一頁碼被錯(cuò)加了兩次,結(jié)果得出了不正確的和2002,這個(gè)被加錯(cuò)了兩次的頁碼是多少?11.〔XX省競賽試題觀察按下列規(guī)律排成一列數(shù):,,,,,,,,,,,,,,,,…<*>,在<*>中左起第m個(gè)數(shù)記為F<m>,當(dāng)F<m>=時(shí),求m的值和這m個(gè)數(shù)的積.12.圖中顯示的填數(shù)"魔方"只填了一部分,將下列9個(gè)數(shù):填入方格中,使得所有行列及對角線上各數(shù)相乘的積相等,求x的值.32x6413.<第12屆"華杯賽"試題>已知m、n都是正整數(shù),并且證明:⑴⑵,求m、n的值.第04講整式考點(diǎn)·方法·破譯1.掌握單項(xiàng)式及單項(xiàng)式的系數(shù)、次數(shù)的概念.2.掌握多項(xiàng)式及多項(xiàng)式的項(xiàng)、常數(shù)項(xiàng)及次數(shù)等概念.3.掌握整式的概念,會(huì)判斷一個(gè)代數(shù)式是否為整式.4.了解整式讀、寫的約定俗成的一般方法,會(huì)根據(jù)給出的字母的值求多項(xiàng)式的值.經(jīng)典·考題·賞析[例1]判斷下列各代數(shù)式是否是單項(xiàng)式,如果不是請簡要說明理由,如果是請指出它的系數(shù)與次數(shù).[解法指導(dǎo)]理解單項(xiàng)式的概念:由數(shù)與字母的積組成的代數(shù)式,單獨(dú)一個(gè)數(shù)或一個(gè)字母也是單項(xiàng)式,數(shù)字的次數(shù)為0,QUOTE是常數(shù),單項(xiàng)式中所有字母指數(shù)和叫單項(xiàng)式次數(shù).解:⑴不是,因?yàn)榇鷶?shù)式中出現(xiàn)了加法運(yùn)算;⑵不是,因?yàn)榇鷶?shù)式是與x的商;⑶是,它的系數(shù)為π,次數(shù)為2;⑷是,它的系數(shù)為QUOTE,次數(shù)為3.[變式題組]01.判斷下列代數(shù)式是否是單項(xiàng)式QUOTE02.說出下列單項(xiàng)式的系數(shù)與次數(shù)[例2]如果QUOTE與QUOTE都是關(guān)于x、y的六次單項(xiàng)式,且系數(shù)相等,求m、n的值.[解法指導(dǎo)]單項(xiàng)式的次數(shù)要弄清針對什么字母而言,是針對x或y或x、y等是有區(qū)別的,該題是針對x與y而言的,因此單項(xiàng)式的次數(shù)指x、y的指數(shù)之和,與字母m無關(guān),此時(shí)將m看成一個(gè)要求的已知數(shù).解:由題意得QUOTE[變式題組]01.一個(gè)含有x、y的五次單項(xiàng)式,x的指數(shù)為3.且當(dāng)x=2,y=-1時(shí),這個(gè)單項(xiàng)式的值為32,求這個(gè)單項(xiàng)式.02.〔XX寫出含有字母x、y的五次單項(xiàng)式______________________.[例3]已知多項(xiàng)式QUOTE⑴這個(gè)多項(xiàng)式是幾次幾項(xiàng)式?⑵這個(gè)多項(xiàng)式最高次項(xiàng)是多少?二次項(xiàng)系數(shù)是什么?常數(shù)項(xiàng)是什么?[解法指導(dǎo)]n個(gè)單項(xiàng)式的和叫多項(xiàng)式,每個(gè)單項(xiàng)式叫多項(xiàng)式的項(xiàng),多項(xiàng)式里次數(shù)最高項(xiàng)的次數(shù)叫多項(xiàng)式的次數(shù).解:⑴這個(gè)多項(xiàng)式是七次四項(xiàng)式;<2>最高次項(xiàng)是QUOTE,二次項(xiàng)系數(shù)為-1,常數(shù)項(xiàng)是1.[變式題組]01.指出下列多項(xiàng)式的項(xiàng)和次數(shù)⑴QUOTE<2>QUOTE02.指出下列多項(xiàng)式的二次項(xiàng)、二次項(xiàng)系數(shù)和常數(shù)項(xiàng)⑴QUOTE<2>QUOTE[例4]多項(xiàng)式QUOTE是關(guān)于x的三次三項(xiàng)式,并且一次項(xiàng)系數(shù)為-7.求m+n-k的值[解法指導(dǎo)]多項(xiàng)式的次數(shù)是單項(xiàng)式中次數(shù)最高的次數(shù),單項(xiàng)式的系數(shù)是數(shù)字與字母乘積中的數(shù)字因數(shù).解:因?yàn)镼UOTE是關(guān)于x的三次三項(xiàng)式,依三次知m=3,而一次項(xiàng)系數(shù)為-7,即-〔3n+1=-7,故n=2.已有三次項(xiàng)為QUOTE,一次項(xiàng)為-7x,常數(shù)項(xiàng)為5,又原多項(xiàng)式為三次三項(xiàng)式,故二次項(xiàng)的系數(shù)k=0,故m+n-k=3+2-0=5.[變式題組]01.多項(xiàng)式QUOTE是四次三項(xiàng)式,則m的值為〔A.2B.-2C.±2D.±102.已知關(guān)于x、y的多項(xiàng)式QUOTE不含二次項(xiàng),求5a-8b的值.03.已知多項(xiàng)式QUOTE是六次四項(xiàng)式,單項(xiàng)式QUOTE的次數(shù)與這個(gè)多項(xiàng)式的次數(shù)相同,求n的值.[例5]已知代數(shù)式QUOTE的值是8,求QUOTE的值.[解法指導(dǎo)]由QUOTE,現(xiàn)階段還不能求出x的具體值,所以聯(lián)想到整體代入法.解:由QUOTE得由QUOTEQUOTE〔3QUOTE[變式題組]01.<XX>如果代數(shù)式-2a+3b+8的值為18,那么代數(shù)式9b-6a+2的值等于〔A.28B.-28C.32D.-3202.〔同山若QUOTE,則QUOTE的值為_______________.03.〔濰坊代數(shù)式QUOTE的值為9,則QUOTE的值為______________.[例6]證明代數(shù)式QUOTE的值與m的取值無關(guān).[解法指導(dǎo)]欲證代數(shù)式的值與m的取值無關(guān),只需證明代數(shù)式的化簡結(jié)果不出現(xiàn)字母即可.證明:原式=QUOTE∴無論m的值為何,原式值都為4.∴原式的值與m的取值無關(guān).[變式題組]01.已知QUOTE,且QUOTE的值與x無關(guān),求a的值.02.若代數(shù)式QUOTE的值與字母x的取值無關(guān),求a、b的值.[例7]〔北京市選拔賽同時(shí)都含有a、b、c,且系數(shù)為1的七次單項(xiàng)式共有〔個(gè)A.4B.12C.15D.25[解法指導(dǎo)]首先寫出符合題意的單項(xiàng)式QUOTE,x、y、z都是正整數(shù),再依x+y+z=7來確定x、y、z的值.解:QUOTE為所求的單項(xiàng)式,則x、y、z都是正整數(shù),且x+y+z=7.當(dāng)x=1時(shí),y=1,2,3,4,5,z=5,4,3,2,1.當(dāng)x=2時(shí),y=1,2,3,4,z=4,3,2,1.當(dāng)x=3時(shí),y=1,2,3,z=3,2,1.當(dāng)x=4時(shí),y=1,2,z=2,1.當(dāng)x=5時(shí),y=z=1.所以所求的單項(xiàng)式的個(gè)數(shù)為5+4+3+2+1=15,故選C.[變式題組]01.已知m、n是自然數(shù),QUOTE是八次三項(xiàng)式,求m、n值.02.整數(shù)n=___________時(shí),多項(xiàng)式QUOTE是三次三項(xiàng)式.演練鞏固·反饋提高01.下列說法正確的是〔A.QUOTE是單項(xiàng)式B.QUOTE的次數(shù)為5C.單項(xiàng)式QUOTE系數(shù)為0D.QUOTE是四次二項(xiàng)式02.a(chǎn)表示一個(gè)兩位數(shù),b表示一個(gè)一位數(shù),如果把b放在a的右邊組成一個(gè)三位數(shù).則這個(gè)三位數(shù)是〔A.100b+aB.10a+bC.a(chǎn)+bD.100a+b03.若多項(xiàng)式QUOTE的值為1,則多項(xiàng)式QUOTE的值是〔A.2B.17C.-7D.704.隨著計(jì)算機(jī)技術(shù)的迅猛發(fā)展,電腦價(jià)格不斷降低,某品牌電腦原售價(jià)為n元,降低m元后,又降低20%,那么該電腦的現(xiàn)售價(jià)為〔A.QUOTEB.QUOTEC.QUOTED.QUOTE05.若多項(xiàng)式QUOTE是關(guān)于x的一次多項(xiàng)式,則k的值是〔A.0B.1C.0或1D.不能確定06.若QUOTE是關(guān)于x、y的五次單項(xiàng)式,則它的系數(shù)是____________.07.電影院里第1排有a個(gè)座位,后面每排都比前排多3個(gè)座位,則第10排有_______個(gè)座位.08.若QUOTE,則代數(shù)式xy+mn值為________.09.一項(xiàng)工作,甲單獨(dú)做需a天完成,乙單獨(dú)做需b天完成,如果甲、乙合做7天完成工作量是____________.10.<XX>有一串單項(xiàng)式QUOTE<1>請你寫出第100個(gè)單項(xiàng)式;⑵請你寫出第n個(gè)單項(xiàng)式.11.〔XX一個(gè)含有x、y的五次單項(xiàng)式,x的指數(shù)為3,且當(dāng)x=2,y=-1時(shí),這個(gè)單項(xiàng)式值為32,求這個(gè)單項(xiàng)式.12.〔天津已知x=3時(shí)多項(xiàng)式QUOTE的值為-1,則當(dāng)x=-3時(shí)這個(gè)多項(xiàng)式的值為多少?13.若關(guān)于x、y的多項(xiàng)式QUOTE與多項(xiàng)式QUOTE的系數(shù)相同,并且最高次項(xiàng)的系數(shù)也相同,求a-b的值.14.某地電話撥號入網(wǎng)有兩種方式,用戶可任取其一.A:計(jì)時(shí)制:0.05元/分B:包月制:50元/月〔只限一部宅電上網(wǎng).此外,每種上網(wǎng)方式都得加收通行費(fèi)0.02元/分.⑴某用戶某月上網(wǎng)時(shí)間為x小時(shí),請你寫出兩種收費(fèi)方式下該用戶應(yīng)該支付的費(fèi)用;<2>若某用戶估計(jì)一個(gè)月內(nèi)上網(wǎng)時(shí)間為20小時(shí),你認(rèn)為采用哪種方式更合算.培優(yōu)升級·奧賽檢測01.〔XX有一列數(shù)QUOTE,從第二個(gè)數(shù)開始,每一個(gè)數(shù)都等于1與它前面那個(gè)數(shù)的倒數(shù)的差.若QUOTE,則QUOTE為〔A.2007B.2C.QUOTED.-102.〔華師一附高招生設(shè)記號*表示求a、b算術(shù)平均數(shù)的運(yùn)算,即QUOTE,則下列等式中對于任意實(shí)數(shù)a、b、c都成立的是〔①Q(mào)UOTE②QUOTE③QUOTE④QUOTEA.①②③B.①②④C.①③④D.②④03.已知QUOTE,那么在代數(shù)式QUOTE中,對任意的a、b,對應(yīng)的代數(shù)式的值最大的是〔A.QUOTEB.QUOTEC.QUOTED.QUOTE04.在一個(gè)地球儀的赤道上用鐵絲箍半徑增大1米,需增加m米長的鐵絲,假設(shè)地球的赤道上一個(gè)鐵絲箍,同樣半徑增大1米,需增加n米長的鐵絲,則m與n大小關(guān)系〔A.m>nB.m<nC.m=nD.不能確定05.〔XX已知QUOTE_____________.06.某書店出售圖書的同時(shí),推出一項(xiàng)租書業(yè)務(wù),每租看一本書,租期不超過3天,每天租金a元,租期超過3天,從第4天開始每天另加收b元,如果租看1本書7天歸還,那么租金為____________元.07.已知QUOTE=_____________.08.有理數(shù)a、b、c在數(shù)軸上的位置如圖所示,QUOTE化簡后的結(jié)果是______________.09.已知QUOTE=______________.10.〔全國初中數(shù)學(xué)競賽設(shè)a、b、c的平均數(shù)為M,a、b的平均數(shù)為N,又N、c的平均數(shù)為P,若a>b>c,則M與P大小關(guān)系______________.11.<資陽>如圖,對面積為1的△ABC逐次進(jìn)行以下操作:第一次操作,分別延長AB,BC,CA至點(diǎn)A1,B1,C1,使得A1B=2AB,B1C=2BC,C1A=2CA,順次連接A1,B1,C1,得到△A1B1C1,記其面積為S1;第二次操作,分別延長A1B1,B1C1,C1A1至點(diǎn)A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,順次連接A2,B2,C2,得到△A2B2C2,記其面積為S2;…;按此規(guī)律繼續(xù)下去,可得到△A5B5C5,則其面積S5=________________.12.〔XX探索n×n的正方形釘子板上<n是釘子板每邊上的釘子數(shù)>,連接任意兩個(gè)釘子所得到的不同長度值的線段種數(shù):當(dāng)n=2時(shí),釘子板上所連不同線段的長度值只有1與,所以不同長度值的線段只有2種,若用S表示不同長度值的線段種數(shù),則S=2;當(dāng)n=3時(shí),釘子板上所連不同線段的長度值只有1,,2,,2五種,比n=2時(shí)增加了3種,即S=2+3=5.觀察圖形,填寫下表:釘子數(shù)<n×n>S值2×223×32+34×42+3+<>5×5<>nn=2n=3n=4n=5寫出<n-1>×<n-1>和n×n的兩個(gè)釘子板上,不同長度值的線段種數(shù)之間的關(guān)系;<用式子或語言表述均可><3>對n×n的釘子板,寫出用n表示S的代數(shù)式.13.〔XX提出問題:如圖①,在四邊形ABCD中,P是AD邊上任意一點(diǎn),△PBC與△ABC和△DBC的面積之間有什么關(guān)系?探究發(fā)現(xiàn):為了解決這個(gè)問題,我們可以先從一些簡單的、特殊的情形入手:⑴當(dāng)AP=AD時(shí)〔如圖②:∵AP=AD,△ABP和△ABD的高相等,∴S△ABP=S△ABD.∵PD=AD-AP=AD,△CDP和△CDA的高相等,∴S△CDP=S△CDA.∴S△PBC=S四邊形ABCD-S△ABP-S△CDP=S四邊形ABCD-S△ABD-S△CDA=S四邊形ABCD-<S四邊形ABCD-S△DBC>-<S四邊形ABCD-S△ABC>=S△DBC+S△ABC.⑵當(dāng)AP=AD時(shí),探求S△PBC與S△ABC和S△DBC之間的關(guān)系,寫出求解過程;⑶當(dāng)AP=AD時(shí),S△PBC與S△ABC和S△DBC之間的關(guān)系式為:________________;⑷一般地,當(dāng)AP=AD〔n表示正整數(shù)時(shí),探求S△PBC與S△ABC和S△DBC之間的關(guān)系,寫出求解過程;問題解決:當(dāng)AP=AD〔0≤≤1時(shí),S△PBC與S△ABC和S△DBC之間的關(guān)系式為:___________.第05講整式的加減考點(diǎn)·方法·破譯1.掌握同類項(xiàng)的概念,會(huì)熟練地進(jìn)行合并同類項(xiàng)的運(yùn)算.2.掌握去括號的法則,能熟練地進(jìn)行加減法的運(yùn)算.3.通過去括號,合并同類項(xiàng)和整式加減的學(xué)習(xí),體驗(yàn)如何認(rèn)識(shí)和抓住事物的本質(zhì)特征.經(jīng)典·考題·賞析[例1]〔XX如果和是同類項(xiàng),那么a、b的值分別是〔A.B.C.D.[解法指導(dǎo)]同類項(xiàng)與系數(shù)的大小無關(guān),與字母的排列順序也無關(guān),只與是否含相同字母,且相同字母的指數(shù)是否相同有關(guān).解:由題意得,∴[變式題組]01.〔天津已知a=2,b=3,則〔A.a(chǎn)x3y2與bm3n2是同類項(xiàng)B.3xay3與bx3y3是同類項(xiàng)C.Bx2a+1y4與ax5yb+1是同類項(xiàng) D.5m2bn5a與6n2bm5a是同類項(xiàng)02.若單項(xiàng)式2X2ym與-xny3是同類項(xiàng),則m=___________,n=___________.03.指出下列哪些是同類項(xiàng)⑴a2b與-ab2⑵xy2與3y2x<3>m-n與5〔n-m⑷5ab與6a2b[例2]<XXXX若多項(xiàng)式合并同類項(xiàng)后是三次二項(xiàng)式,則m應(yīng)滿足的條件是___________.[解法指導(dǎo)]合并同類項(xiàng)時(shí),把同類項(xiàng)的系數(shù)相加,所得的結(jié)果作為系數(shù),字母和字母的指數(shù)不變.解:因?yàn)榛喓鬄槿味?xiàng)式,而5x3+3已經(jīng)為三次二項(xiàng)式,故二次項(xiàng)系數(shù)為0,即-2m-2=0,∴m=-1[變式題組]01.計(jì)算:-〔2x2-3x-1>-2<x2-3x+5>+<x2+4x+3>02.<XX〔2x-4y+2y03.〔XXm-n-<m+n>[例3]〔XX求整式3x2-5x+2與2x2+x-3的差.[解法指導(dǎo)]在求兩個(gè)多項(xiàng)式的差時(shí),應(yīng)先將這兩個(gè)多項(xiàng)式分別用括號括起來,再去括號,而去括號可以用口訣:去括號,看符號,是"+"號,不變號,是"-"號,全變號,去了括號后,有同類項(xiàng)再合并同類項(xiàng).解:〔3x2-5x+2>-〔2x2+x-3>=3x2-5x+2-2x2-x+3=x2-6x+5[變式題組]01.一個(gè)多項(xiàng)式加上-3x+2xy得x2-3xy+y2,則這個(gè)多項(xiàng)式是___________.02.減去2-3x等于6x2-3x-8的代數(shù)式是___________.[例4]當(dāng)a=,b=時(shí),求5〔2a+b>2-3<3a+2b>2+2<3a+2b>的值.[解法指導(dǎo)]將〔2a+b>2,〔3a+2b>分別視為一個(gè)整體,因此可以先合并"同類項(xiàng)"再代入求值,對于多項(xiàng)式求值問題,通常先化簡再求值.解:5〔2a+b>2-3<3a+2b>-3<2a+b>2+2<3a+2b>=<5-3><2a+b>2+<2-3><3a+2b>=2<2a+b>2-<3a+2b>∵a=,b=∴原式=[變式題組]01.〔XXXX先化簡再求值:〔2a+1>2-2<2a+1>+3,其中a=2.02.已知a2+bc=14,b2-2bc=-6,求3a2+4b2-5bC.[例5]證明四位數(shù)的四個(gè)數(shù)字之和能被9整除,因此四位數(shù)也能被9整除.[解法指導(dǎo)]可用代數(shù)式表示四位數(shù)與其四個(gè)數(shù)之和的差,然后證這個(gè)差能被9整除.證明:設(shè)此四位數(shù)為1000a+100b+10c+d,則1000a+100b+10c+d-〔a+b+c+d>=999a+99b+9c=9<111a+11b+c>∵111a+11b+c為整數(shù),∴1000a+100b+10c+d=9<111a+11b+c>+〔a+b+c+d>∵9<111a+11b+c>與〔a+b+c+d>均能被9整除∴1000a+100b+10c+d也能被9整除[變式題組]01.已知a<b<c,且x<y<z,下列式子中值最大的可能是〔A.a(chǎn)x+by+czB.a(chǎn)x+cy+bzC.bx+cy+azD.bx+ay+cz02.任何三位數(shù)減去此三位數(shù)的三個(gè)數(shù)字之和必為9的倍數(shù).[例6]將〔x2-x+1>6展開后得a12x12+a11x11+……+a2x2+a1x+a0,求a12+a10+a8+……+a4+a2+a0的值.[解法指導(dǎo)]要求系數(shù)之和,但原式展開含有x項(xiàng),如何消去x項(xiàng),可采用賦特殊值法.解:令x=1得a12+a11+……+a1+a0=1令x=-1得a12-a11+a10-……-a1+a0=729兩式相加得2〔a12+a10+a8+……+a2+a0=730∴a12+a10+a8+……+a2+a0=365[變式題組]01.已知〔2x-1>5=a5x5+a4x4+a3x3+a2x2+a1x+a0<1>當(dāng)x=0時(shí),有何結(jié)論;<2>當(dāng)x=1時(shí),有何結(jié)論;<3>當(dāng)x=-1時(shí),有何結(jié)論;<4>求a5+a3+a1的值.02.已知ax4+bx3+cx2+dx+e=<x-2>4<1>求a+b+c+d+e.試求a+c的值.[例7]<希望杯培訓(xùn)題已知關(guān)于x的二次多項(xiàng)式a<x3-x2+3x>+b<2x2+x>+x3-5,當(dāng)x=2時(shí)的值為-17.求當(dāng)x=-2時(shí),該多項(xiàng)式的值.[解法指導(dǎo)]設(shè)法求出a、b的值,解題的突破口是根據(jù)多項(xiàng)式降冪排列,多項(xiàng)式的次數(shù)等概念,挖掘隱含a、b的等式.解:原式=ax3-ax2+3ax+2bx2+bx+x3-5=<a+1>x3+<2b-a>x2+<3a+b>x-5∵原式中的多項(xiàng)式是關(guān)于x的二次多項(xiàng)式∴∴a=-1又當(dāng)x=2時(shí),原式的值為-17.∴<2b+1>22+=-17,∴b=-1∴原式=-x2-4x-5∴當(dāng)x=-2時(shí),原式=-〔-22-4〔-2-5=-1[變式題組]01.〔北京迎春杯當(dāng)x=-2時(shí),代數(shù)式ax3-bx+1=-17.則x=-1時(shí),12ax-3bx3-5=___________.02.<XX競賽題已知y=ax7+bx5+cx3+dx+e,其中a、b、c、d、e為常數(shù),當(dāng)x=2,y=23,x=-2,y=-35,則e為〔A.-6 B. 6 C.-12 D.12演練鞏固·反饋提高01.〔荊州若-3x2my3與2x4yn是同類項(xiàng),則的值是〔A.0 B.1C.7 D.-102.一個(gè)單項(xiàng)式減去x2-y2等于x2+y2,則這個(gè)單項(xiàng)式是〔A.2x2 B.2y2C.-2x2D.-2y203.若M和N都是關(guān)于x的二次三項(xiàng)式,則M+N一定是〔A.二次三項(xiàng)式 B.一次多項(xiàng)式C.三項(xiàng)式 D.次數(shù)不高于2的整式04.當(dāng)x=3時(shí),多項(xiàng)式ax5+bx3+cx-10的值為7.則當(dāng)x=-3時(shí),這個(gè)多項(xiàng)式的值是〔A.-3 B.-27C.-7 D.705.已知多項(xiàng)式A=x2+2y2-z2,B=-4x2+3y2+2z2,且A+B+C=0,則多項(xiàng)式c為〔A.5x2-y2-z2B.3x2-y2-3z2C.3x2-5y2-z2D.3x2-5y2+z206.已知,則等于〔A.B.1C.D.007.某人上山的速度為a千米/時(shí),后又沿原路下山,下山速度為b千米/時(shí),那么這個(gè)人上山和下山的平均速度是〔A.千米/時(shí)B.千米/時(shí)C.千米/時(shí)D.千米/時(shí)08.使〔ax2-2xy+y2>-<-ax2+bxy+2y2>=6x2-9xy+cy2成立的a、b、c的值分別是〔A.3,7,1 B.-3,-7,-1C.3,-7,-1 D.-3,7,-109.k=___________時(shí),多項(xiàng)式3x2-2kxy+3y2+-4中不含xy項(xiàng).10.<宿遷若2a-b=2,則6+8a-4b=___________11.某項(xiàng)工程,甲獨(dú)做需m天完成,甲乙合作需n天完成,那么乙獨(dú)做需要___________天完成.12.x2-xy=-3,2xy-y2=-8,則2x2-y2=___________.13.設(shè)a表示一個(gè)兩位數(shù),b表示一個(gè)三位數(shù),現(xiàn)在把a放b的左邊組成一個(gè)五位數(shù),設(shè)為x,再把b放a的左邊,也組成一個(gè)五位數(shù),設(shè)為y,試問x-y能被9整除嗎?請說明理由.14.若代數(shù)式〔x2+ax-2y+7>-<bx2-2x+9y-1>的值與字母x的取值無關(guān),求a、b的值.15.設(shè)A=x2-2xy-y2,B=-2x2+xy-y2,B=-2x2+xy-y2,當(dāng)x<y<0時(shí),比較A與B的值的大小.培優(yōu)升級·奧賽檢測01.A是一個(gè)三位數(shù),b是一位數(shù),如果把b置于a的右邊,則所得的四位數(shù)是〔A.a(chǎn)bB.a(chǎn)+bC.1000b+aD.10a+b02.一個(gè)兩位數(shù)的個(gè)位數(shù)字和十位數(shù)字交換位置后,所得的數(shù)比原來的數(shù)大9,這樣的兩位數(shù)中,質(zhì)數(shù)有〔A.1個(gè) B.3個(gè)C.5個(gè) D.6個(gè)03.有三組數(shù)x1,x2,x3;y1,y2,y3;z1,z2,z3,它們的平均數(shù)分別是a、b、c,那么x1+y1-z1,x2+y2-z2,x3+y3-z3的平均數(shù)是〔A.B.C.A+b-cD.3<a+b-c>04.如果對于某一特定范圍內(nèi)x的任何允許值P=++……++的值恒為一常數(shù),則此值為〔A.2 B.3C.4 D.505.〔XX競賽已知a+b=0,a≠0,則化簡得〔A.2aB.2bC.2 D.-206.如果a個(gè)同學(xué)在b小時(shí)內(nèi)共搬運(yùn)c塊磚,那么c個(gè)同學(xué)以同樣速度搬a塊磚,所需的小時(shí)數(shù)〔A.B.C.D.07.如果單項(xiàng)式3xa+2yb-2與5x3ya+2的和為8x3ya+2,那么=_________.08.〔第16屆"希望杯"邀請賽試題如果x2+2x=3則x4+7x3+8x2-13x+15=_________.09.將1,2,3……100這100個(gè)自然數(shù),任意分為50組,每組兩個(gè)數(shù),現(xiàn)將每組的兩個(gè)數(shù)中任一數(shù)值記作a,另一個(gè)記作b,代入代數(shù)式〔中進(jìn)行計(jì)算,求出其結(jié)果,50組數(shù)代入后可求的50個(gè)值,則這50個(gè)值的和的最大值時(shí)_________.10.已知兩個(gè)多項(xiàng)式A和B,A=nxn+4+x3-n-x3+x-3,B=3xn+4-x4+x3+nx2-2x-1,試判斷是否存在整數(shù)n,使A-B為五次六項(xiàng)式.11.設(shè)xyz都是整數(shù),且11整除7x+2y-5z.求證:11整除3x-7y+12z.12.<美國奧林匹克競賽題在一次游戲中,魔術(shù)師請一個(gè)而你隨意想一個(gè)三位數(shù)<a、b、c依次是這個(gè)數(shù)的百位、十位、個(gè)位數(shù)字并請這個(gè)人算出5個(gè)數(shù),,,與的和N,把N告訴魔術(shù)師,于是魔術(shù)師就可以說出這個(gè)人所想的數(shù),現(xiàn)在設(shè)N=3194,請你當(dāng)魔術(shù)師,求出來.13.<XX市競賽題將一個(gè)三位數(shù)的中間數(shù)去掉,成為一個(gè)兩位數(shù),且滿足=9+4〔如155=915+45.試求出所有這樣的三位數(shù).第06講一元一次方程概念和等式性質(zhì)考點(diǎn)·方法·破譯1.了解一元一次方程、等式的概念,能準(zhǔn)確進(jìn)行辨析.2.掌握一元一次方程的解、等式的性質(zhì)并會(huì)運(yùn)用.經(jīng)典·考題·賞析[例1]下面式子是方程的是<>A.x+3B.x+y<3C.2x2+3=0D.3+4=2+5[解法指導(dǎo)]判斷式子是方程,首先要含有等號,然后看它是否含有未知數(shù),只有同時(shí)具有這兩個(gè)條件的就是方程.2x2+3=0是一個(gè)無解的方程,但它是方程,故選擇C.[變式題組]01.在①2x+3y-1.②2+5=15-8,③1-x=x+l,④2x+y=3中方程的個(gè)數(shù)是<>A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)02.〔XX舍肥在甲處工作的有272人,在乙處工作的有196人,如果要使乙處工作的人數(shù)是甲處工作人數(shù)的,應(yīng)從乙處調(diào)多少人到甲處?若設(shè)應(yīng)從乙處調(diào)多少人到甲處,則下列方程正確的是<>A.272+x=<196-x>B.<272-x>=196–xC.×272+x=196-xD.<272+x>=196-x03.根據(jù)下列條件列出方程:⑴3與x的和的2倍是14⑵x的2倍與3的差是5⑶x的與13的差的2倍等于1[例2]下列方程是一元一次方程的是<>A.x2-2x-3=0B.2x-3y=4C.=3D.x=0[解法指導(dǎo)]判斷一個(gè)方程是一元一次方程,要滿足兩個(gè)條件:①只含有一個(gè)未知數(shù);②未知數(shù)的次數(shù)都是1,只有這樣的方程才是一元一次方程.故選擇D.[變式題組]01.以下式子:①-2+10=8;②5x+3=17;③xy;④x=2;⑤3x=1;⑥=4x;⑦〔a+bc=ac+bc;⑧ax+b其中等式有___________個(gè);一元一次方程有___________個(gè).02.〔江油課改實(shí)驗(yàn)區(qū)若〔m-2=5是一元一次方程,則m的值為<>A.±2B.-2C.2D.403.〔天津下列式子是方程的是<>A.3×6=18B.3x-8c.5y+6D.y÷5=1[例3]若x=3是方程-kx+x+5=0的解,則k的值是<>A.8B.3C.D.[解法指導(dǎo)]方程的解是使方程左右兩邊相等的未知數(shù)的值,所以-3k+3+5=0,k=故選擇D.[變式題組]01.〔XXx=2是下列哪個(gè)方程的解<>A.3x=2x-1B.3x-2x+2=0C.3x-1=2x+1D.3x=2x-202.〔XX方程3x+6=0的解的相反數(shù)是<>A.2B.-2C.3D.-303.〔上海如果x=2是方程的根,那么a的值是<>A.0B.2C.-2D.-604.〔XX根據(jù)下列問題,設(shè)未知數(shù)并列出方程,然后估算方程的解:<1>某數(shù)的3倍比這個(gè)數(shù)大4;<2>小明年齡的3倍比他的爸爸的年齡多2歲,小明爸爸40歲,問小明幾歲?<3>一個(gè)商店今年8月份出售A型電機(jī)300臺(tái),比去年同期增加50%,問去年8月份出售A型電機(jī)多少臺(tái)?[例4]〔XXc為任意有理數(shù),對于等式a=2×0.25a進(jìn)入下面的變形,其結(jié)果仍然是等式的是<>A.兩邊都減去-3cB.兩邊都乘以C.兩邊都除以2cD.左邊乘以2右邊加上c[解法指導(dǎo)]等式的性質(zhì)有兩條:①等式兩邊都加〔或減同一個(gè)數(shù)〔或式子結(jié)果仍相等;②等式兩邊都乘同一個(gè)數(shù),或除以同一個(gè)不為0的數(shù),結(jié)果仍相等,故選擇A.[變式題組]01.〔XX如果ma=mb,那么下列等式不一定成立的是<>A.ma+1=mb+1B.ma?3=mb?3C.ma=mbD.a(chǎn)=b02.〔XX由等式3a?5=2a+b得到a=11的變形是<>A.等式兩邊都除以3B.等式兩邊都加上〔2a-5C.等式兩邊都加上5D.等式兩邊都減去〔2a-503.〔XX下列變形符合等式性質(zhì)的是<>A.如果2x?3=7,那么2x=7?xB.如果3x?2=x+l,那么3x?x=1?2C.如果-2x=5,那么x=-5+2D.如果-x=1,那么x=-3[例5]利用等式的性質(zhì)解下列方程:⑴x+7=19⑵-5x=30⑶-x?5=4⑴解:兩邊都減去7得x+7?7=19?7合并同類項(xiàng)得x=12⑵解:兩邊都乘以得x=-6⑶解:兩邊都加上5得-x?5+5=4+5合并同類項(xiàng)得-x=9兩邊都乘以-3得x=-27[解法指導(dǎo)]要使方程x+7=19轉(zhuǎn)化為x=a〔常數(shù)的形式,要去掉方程左邊的7,因此要減7,類似地考慮另兩個(gè)方程如何轉(zhuǎn)化為x=a的形式.[變式題組]01.〔黃岡某人在同一路段上走完一定的路程,去的速度是,回來的速度是,則他的平均速度為<>A.B.C.D.02.〔XX已知是方程2x?ay=3的一個(gè)解,那么a的值是<>A.1B.3C.-3D.-103.〔XX下列變形正確的是<>A.由x+3=4得x=7B.由a+b=0,得a=bC.由5x=4x-2得x=2D.由=0,得x=004.〔XX解方程<>A.同乘以B.同除以C.同乘以-D.同除以[例6]根據(jù)所給出的條件列出方程:小華在銀行存了一筆錢,月利率為2%,利息稅為20%,5個(gè)月后,他一共取出了本息1080元,問他存人的本金是多少元?〔只列方程[解法指導(dǎo)]生活中常碰見的儲(chǔ)蓄問題是中考中常見的一種題型,應(yīng)正確理解利息稅的含義,清楚本息和:本金+利息〔除稅后是解題的關(guān)鍵.題中的利息稅是把利息的20%扣除作為稅上交國家.解:設(shè)他存入的本金是x元,則5個(gè)月的利息是2%×5x=0.1x元,需交利息稅0.lx×20%=0.02x元,根據(jù)題意得:x+0.lx?0.02x=1080.[變式題組]01.〔XX商場在促銷活動(dòng)中,將標(biāo)價(jià)為200元的商品,在打八折的基礎(chǔ)上,再打八折銷售,則該商品現(xiàn)在售價(jià)是<>A.160元B.128元C.120元D.8元02.〔XX根據(jù)下列條件,列出方程并解之:<1>某數(shù)的5倍減去4等于該數(shù)的6倍加上7,求某數(shù);<2>長方形的周長是50厘米,長與寬之比為3∶2,求長方形面積,[例7]〔"希望杯"邀請賽試題已知p、q都是質(zhì)數(shù),并且以x為未知數(shù)的一元一次方程px+5q=97的解是l.求代數(shù)式40p+l0lq+4的值.[解法指導(dǎo)]用代入法可得到p、q的關(guān)系式,再綜合運(yùn)用整數(shù)知識(shí):偶數(shù)+奇數(shù)=奇數(shù)、奇數(shù)+奇數(shù)=偶數(shù)、偶數(shù)+偶數(shù)=偶數(shù).解:把x=l代入方程px+5q=97,得p+5q=97,故p與5q中必有一個(gè)數(shù)是偶數(shù):<1>若p=2,則Sq=95,q=19,40p+l01q+4=40×2+101×19+4=2003;<2>若5q為偶數(shù),則q=2,p=87,但87不是質(zhì)數(shù),與題設(shè)矛盾,舍去.∴40p+l0lq+4的值為2003.[變式題組]01.〔XX省競賽題已知=3x+1,則〔64x2+48x+92009=_______.02.〔第18屆"希望杯"競賽題對任意四個(gè)有理數(shù)a、b、c、d,定義新運(yùn)算:=ad?bc,已知=18,則x=<>A.-1B.2C.3D.4演練鞏固反饋提高01.下面四個(gè)式子是方程的是<>A.3+2=5B.x=2C.2x?5D.a(chǎn)2+2ab≠b202,下列方程是一元一次方程的是<>A.x2?2x?3=0B.2x?3y=3C.x2?x?1=x2+1D.03."x的一半比省的相反數(shù)大7"用方程表達(dá)這句話的意思是<>A.=7?xB.+7=?xC.+7=xD.=x+704.〔XX把1200g洗衣粉分別裝入5個(gè)大小相同的瓶子中,除一瓶還差15g外,其余四瓶都裝滿了,問裝滿的每個(gè)瓶子中有洗衣粉多少克?若設(shè)裝滿的每個(gè)瓶子有xg洗衣粉,列方程為<>A.5x+15=1200B.5x-15=1200C.4x+15=1200D.4〔x+15>=120005.在方程①3x?4=7;②=3;③5x?2=3;④3〔x+1=2〔2x+1中解為x=1的方程是<>A.①②B.①③C.②④D.③④06.如果方程2n+b=n?1的解是n=-4,那么b的值是<>A.3B.5C.-5D.-1307.若"△"是新規(guī)定的某種運(yùn)算符號,設(shè)a△b=a2+b則〔-2△x=10中x為<>A.-6B.6C.8D.-808.〔XX小剛每分鐘跑am,用6分鐘可以跑完3000m,如果每分鐘多跑l0m,則可以提前1分鐘跑完3000m,下列等式不正確的是<>A.<a+10><b-1>=abB.〔a?10><b+l>=3000C.=a+10D.=b?109.已知關(guān)于x的方程<m+2>xm+4=2m-1是一元一次方程,則x=_______.10.在數(shù)值2,-3,4,-5中,是方程4x?2=10+x的解是_______.11.〔XX已知?1=,試用等式的性質(zhì)比較m、n的大?。?2.〔XX已知方程a?2x=-4的解為x=4,求式子a3?a2?a的值.13.三個(gè)連續(xù)自然數(shù)的和是33,求這三個(gè)數(shù).14.某班有70人,其中會(huì)游泳的有52人,會(huì)滑冰的有33人,這兩項(xiàng)都不會(huì)的有6人,這兩項(xiàng)都會(huì)的有多少人?15.甲車隊(duì)有司機(jī)80人,乙車隊(duì)有50人,要使兩個(gè)車隊(duì)的司機(jī)人數(shù)一樣多,應(yīng)該從甲車隊(duì)調(diào)多少個(gè)司機(jī)到乙車隊(duì)?培優(yōu)升級奧賽檢測01.下列判斷中正確的是<>A.方程2x-3=1與方程x<2x-3>=x同解,B.方程2x-3=1與方程x<2x-3>=x沒有相同的解.C.方程x<2x-3>=x的解是方程2x-3=1的解.D.方程2x?3=1的解是方程x<2x-3>=x的解.02.方程的解是<>A.2008B.2009C.2010
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新鮮蔬菜采購合同
- 兒童游樂場與家長的孩子傷害免責(zé)協(xié)議
- 本協(xié)議不可抗力條款及免責(zé)事由說明
- 2024年垃圾處理技術(shù)研發(fā)合作協(xié)議
- 游戲語音助手系統(tǒng)開發(fā)合作協(xié)議
- 2024年在線教育平臺(tái)投資合同
- 旅游戶外探險(xiǎn)活動(dòng)安全責(zé)任豁免合同書
- 水果銷售合同
- 2024年環(huán)保技術(shù)改造項(xiàng)目投資合同
- 綠色能源工程項(xiàng)目投資合作協(xié)議
- 公路工程施工現(xiàn)場安全檢查手冊
- 公司組織架構(gòu)圖(可編輯模版)
- 1汽輪機(jī)跳閘事故演練
- 陜西省銅川市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會(huì)明細(xì)
- 禮品(禮金)上交登記臺(tái)賬
- 北師大版七年級數(shù)學(xué)上冊教案(全冊完整版)教學(xué)設(shè)計(jì)含教學(xué)反思
- 2023高中物理步步高大一輪 第五章 第1講 萬有引力定律及應(yīng)用
- 青少年軟件編程(Scratch)練習(xí)題及答案
- 浙江省公務(wù)員考試面試真題答案及解析精選
- 系統(tǒng)性紅斑狼瘡-第九版內(nèi)科學(xué)
- 全統(tǒng)定額工程量計(jì)算規(guī)則1994
評論
0/150
提交評論