版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
四川省遂寧市2023-2024學(xué)年數(shù)學(xué)九上期末考試模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.在一個不透明的袋中裝著3個紅球和1個黃球,它們只有顏色上的區(qū)別,隨機(jī)從袋中摸出1個球,恰好是紅球的概率為()A. B. C. D.2.如圖,在中,.將繞點(diǎn)按順時針方向旋轉(zhuǎn)度后得到,此時點(diǎn)在邊上,斜邊交邊于點(diǎn),則的大小和圖中陰影部分的面積分別為()A. B.C. D.3.關(guān)于x的一元二次方程x2+4x+k=0有兩個相等的實(shí)數(shù)根,則k的值為()A.k=4 B.k=﹣4 C.k≥﹣4 D.k≥44.在如圖所示的象棋盤(各個小正方形的邊長均相等)中,根據(jù)“馬走日”的規(guī)則,“馬”應(yīng)落在下列哪個位置處,能使“馬”、“車”、“炮”所在位置的格點(diǎn)構(gòu)成的三角形與“帥”、“相”,“兵”所在位置的格點(diǎn)構(gòu)成的三角形相似()A.①處 B.②處 C.③處 D.④處5.二次函數(shù)=ax2+bx+c的部分對應(yīng)值如表,利用二次的數(shù)的圖象可知,當(dāng)函數(shù)值y>0時,x的取值范圍是()x﹣3﹣2﹣1012y﹣12﹣50343A.0<x<2 B.x<0或x>2 C.﹣1<x<3 D.x<﹣1或x>36.一元二次方程的解是()A. B. C. D.7.如圖,在菱形ABCD中,AB=4,按以下步驟作圖:①分別以點(diǎn)C和點(diǎn)D為圓心,大于CD的長為半徑畫弧,兩弧交于點(diǎn)M,N;②作直線MN,且MN恰好經(jīng)過點(diǎn)A,與CD交于點(diǎn)E,連接BE,則BE的值為()A. B.2 C.3 D.48.如圖,A,B是反比例函數(shù)y=在第一象限內(nèi)的圖象上的兩點(diǎn),且A,B兩點(diǎn)的橫坐標(biāo)分別是2和4,則△OAB的面積是()A.4 B.3 C.2 D.19.已知⊙O的半徑為13,弦AB//CD,AB=24,CD=10,則AB、CD之間的距離為A.17 B.7 C.12 D.7或1710.等腰三角形底角與頂角之間的函數(shù)關(guān)系是()A.正比例函數(shù) B.一次函數(shù) C.反比例函數(shù) D.二次函數(shù)11.在一個不透明的塑料袋中裝有紅色、白色球共40個,除顏色外其它都相同,小明通過多次摸球試驗(yàn)后發(fā)現(xiàn),其中摸到紅色球的頻率穩(wěn)定在15%左右,則口袋中紅色球可能()A.4個 B.6個 C.34個 D.36個12.x=1是關(guān)于x的一元二次方程x2+ax﹣2b=0的解,則2a﹣4b的值為()A.﹣2 B.﹣1 C.1 D.2二、填空題(每題4分,共24分)13.已知:二次函數(shù)y=ax2+bx+c圖象上部分點(diǎn)的橫坐標(biāo)x與縱坐標(biāo)y的對應(yīng)值如表格所示,那么它的圖象與x軸的另一個交點(diǎn)坐標(biāo)是_____.x…﹣1012…y…0343…14.如圖,PA,PB分別切⊙O于點(diǎn)A,B.若∠P=100°,則∠ACB的大小為_____(度).15.某商場在“元旦”期間推出購物摸獎活動,摸獎箱內(nèi)有除顏色以外完全相同的紅色、白色乒乓球各兩個.顧客摸獎時,一次摸出兩個球,如果兩個球的顏色相同就得獎,顏色不同則不得獎.那么顧客摸獎一次,得獎的概率是_______.16.一圓錐的側(cè)面展開后是扇形,該扇形的圓心角為120°,半徑為6cm,則此圓錐的底面圓的半徑為cm.17.如圖,PA、PB分別切⊙O于點(diǎn)A、B,若∠P=70°,則∠C的大小為(度).18.若是關(guān)于x的一元二次方程的解,則代數(shù)式的值是________.三、解答題(共78分)19.(8分)如圖,關(guān)于x的二次函數(shù)y=x2+bx+c的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B與y軸交于點(diǎn)C(0,3),拋物線的對稱軸與x軸交于點(diǎn)D.(1)求二次函數(shù)的表達(dá)式;(2)在y軸上是否存在一點(diǎn)P,使△PBC為等腰三角形?若存在.請求出點(diǎn)P的坐標(biāo);(3)有一個點(diǎn)M從點(diǎn)A出發(fā),以每秒1個單位的速度在AB上向點(diǎn)B運(yùn)動,另一個點(diǎn)N從點(diǎn)D與點(diǎn)M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運(yùn)動,當(dāng)點(diǎn)M到達(dá)點(diǎn)B時,點(diǎn)M、N同時停止運(yùn)動,問點(diǎn)M、N運(yùn)動到何處時,△MNB面積最大,試求出最大面積.20.(8分)一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,其盤面分為等份,分別標(biāo)上數(shù)字.小穎準(zhǔn)備轉(zhuǎn)動轉(zhuǎn)盤次,現(xiàn)已轉(zhuǎn)動次,每一次停止后,小穎將指針?biāo)笖?shù)字記錄如下:次數(shù)數(shù)字小穎繼續(xù)自由轉(zhuǎn)動轉(zhuǎn)盤次,判斷是否可能發(fā)生“這次指針?biāo)笖?shù)字的平均數(shù)不小于且不大于”的結(jié)果?若有可能,計算發(fā)生此結(jié)果的概率,并寫出計算過程;若不可能,請說明理由.(指針指向盤面等分線時為無效轉(zhuǎn)次.)21.(8分)如圖,⊙O是△ABC的外接圓,AD是⊙O的直徑,若⊙O的半徑為,AC=2,求sinB的值.22.(10分)問題背景如圖1,在正方形ABCD的內(nèi)部,作∠DAE=∠ABF=∠BCG=∠CDH,根據(jù)三角形全等的條件,易得△DAE≌△ABF≌△BCG≌△CDH,從而得到四邊形EFGH是正方形.類比探究如圖2,在正△ABC的內(nèi)部,作∠BAD=∠CBE=∠ACF,AD,BE,CF兩兩相交于D,E,F(xiàn)三點(diǎn)(D,E,F(xiàn)三點(diǎn)不重合)(1)△ABD,△BCE,△CAF是否全等?如果是,請選擇其中一對進(jìn)行證明.(2)△DEF是否為正三角形?請說明理由.(3)進(jìn)一步探究發(fā)現(xiàn),△ABD的三邊存在一定的等量關(guān)系,設(shè)BD=a,AD=b,AB=c,請?zhí)剿鱝,b,c滿足的等量關(guān)系.23.(10分)先鋒中學(xué)數(shù)學(xué)課題組為了了解初中學(xué)生閱讀數(shù)學(xué)教科書的現(xiàn)狀,隨機(jī)抽取某校部分初中學(xué)生進(jìn)行調(diào)查,調(diào)查結(jié)果分為“重視”、“一般”、“不重視”、“說不清楚”四種情況(依次用A、B、C、D表示),依據(jù)相關(guān)數(shù)據(jù)繪制成以下不完整的統(tǒng)計表和統(tǒng)計圖,請根據(jù)圖表中的信息解答下列問題:類別頻數(shù)頻率重視a0.25一般600.3不重視bc說不清楚100.05(1)求樣本容量及表格中a,b,c的值,并補(bǔ)全統(tǒng)計圖;(2)若該校共有2000名學(xué)生,請估計該校“不重視閱讀數(shù)學(xué)教科書”的學(xué)生人數(shù).24.(10分)如圖,在△ABC中,AB=10,AC=8,D、E分別是AB、AC上的點(diǎn),且AD=4,∠BDE+∠C=180°.求AE的長.25.(12分)如圖,是□ABCD的邊延長線上一點(diǎn),連接,交于點(diǎn).求證:△∽△CDF.26.已知二次函數(shù)的圖象經(jīng)過點(diǎn).(1)當(dāng)時,若點(diǎn)在該二次函數(shù)的圖象上,求該二次函數(shù)的表達(dá)式;(2)已知點(diǎn),在該二次函數(shù)的圖象上,求的取值范圍;(3)當(dāng)時,若該二次函數(shù)的圖象與直線交于點(diǎn),,且,求的值.
參考答案一、選擇題(每題4分,共48分)1、B【分析】直接利用概率公式求解;【詳解】解:從袋中摸出一個球是紅球的概率;故選B.【點(diǎn)睛】考查了概率的公式,解題的關(guān)鍵是牢記概率的的求法.2、C【解析】試題分析:∵△ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2,∴∠B=60°,AC=BC×cot∠A=2×=2,AB=2BC=4,∵△EDC是△ABC旋轉(zhuǎn)而成,∴BC=CD=BD=AB=2,∵∠B=60°,∴△BCD是等邊三角形,∴∠BCD=60°,∴∠DCF=30°,∠DFC=90°,即DE⊥AC,∴DE∥BC,∵BD=AB=2,∴DF是△ABC的中位線,∴DF=BC=×2=1,CF=AC=×2=,∴S陰影=DF×CF=×=.故選C.考點(diǎn):1.旋轉(zhuǎn)的性質(zhì)2.含30度角的直角三角形.3、A【分析】根據(jù)方程有兩個相等的實(shí)數(shù)根結(jié)合根的判別式即可得出關(guān)于k的一元一次方程,解之即可得出結(jié)論.【詳解】解:∵關(guān)于x的一元二次方程x2+1x+k=0有兩個相等的實(shí)數(shù)根,∴△=12﹣1k=16﹣1k=0,解得:k=1.故選:A.【點(diǎn)睛】本題考查了根的判別式以及解一元一次方程,熟練掌握“當(dāng)△=0時,方程有兩個相等的兩個實(shí)數(shù)根”是解題的關(guān)鍵.4、B【分析】確定“帥”、“相”、“兵”所在位置的格點(diǎn)構(gòu)成的三角形的三邊的長,然后利用相似三角形的對應(yīng)邊的比相等確定第三個頂點(diǎn)的位置即可.【詳解】帥”、“相”、“兵”所在位置的格點(diǎn)構(gòu)成的三角形的三邊的長分別為;“車”、“炮”之間的距離為1,“炮”②之間的距離為,“車”②之間的距離為2,∵∴馬應(yīng)該落在②的位置,故選B【點(diǎn)睛】本題考查了相似三角形的知識,解題的關(guān)鍵是利用勾股定理求得三角形的各邊的長,難度不大.5、C【分析】利用表中數(shù)據(jù)和拋物線的對稱性得到拋物線的對稱軸為直線x=1,則拋物線的頂點(diǎn)坐標(biāo)為(1,4),所以拋物線開口向下,則拋物線與x軸的一個交點(diǎn)坐標(biāo)為(3,1),然后寫出拋物線在x軸上方所對應(yīng)的自變量的范圍即可.【詳解】∵拋物線經(jīng)過點(diǎn)(1,3),(2,3),∴拋物線的對稱軸為直線,∴拋物線的頂點(diǎn)坐標(biāo)為(1,4),拋物線開口向下,∵拋物線與x軸的一個交點(diǎn)坐標(biāo)為(﹣1,1),∴拋物線與x軸的一個交點(diǎn)坐標(biāo)為(3,1),∴當(dāng)﹣1<x<3時,y>1.故選:C.【點(diǎn)睛】本題考查了二次函數(shù)與軸的交點(diǎn)、二次函數(shù)的性質(zhì)等知識,解題的關(guān)鍵是要認(rèn)真觀察,利用表格中的信息解決問題.6、D【分析】這個式子先移項(xiàng),變成x2=4,從而把問題轉(zhuǎn)化為求4的平方根.【詳解】移項(xiàng)得,x2=4開方得,x=±2,故選D.【點(diǎn)睛】(1)用直接開方法求一元二次方程的解的類型有:x2=a(a≥0);ax2=b(a,b同號且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同號且a≠0).法則:要把方程化為“左平方,右常數(shù),先把系數(shù)化為1,再開平方取正負(fù),分開求得方程解”.(2)用直接開方法求一元二次方程的解,要仔細(xì)觀察方程的特點(diǎn).7、B【解析】由作法得AE垂直平分CD,則∠AED=90°,CE=DE,于是可判斷∠DAE=30°,∠D=60°,作EH⊥BC于H,從而得到∠ECH=60°,利用三角函數(shù)可求出EH、CH的值,再利用勾股定理即可求出BE的長.【詳解】解:如圖所示,作EH⊥BC于H,由作法得AE垂直平分CD,∴∠AED=90°,CE=DE=2,∵四邊形ABCD為菱形,∴AD=2DE,∴∠DAE=30°,∴∠D=60°,∵AD//BC,∴∠ECH=∠D=60°,在Rt△ECH中,EH=CE·sin60°=,CH=CE·cos60°=,∴BH=4+1=5,在Rt△BEH中,由勾股定理得,.故選B.【點(diǎn)睛】本題考查了垂直平分線的性質(zhì)、菱形的性質(zhì)、解直角三角形等知識.合理構(gòu)造輔助線是解題的關(guān)鍵.8、B【解析】先根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征及A,B兩點(diǎn)的橫坐標(biāo),求出A(1,1),B(4,1).再過A,B兩點(diǎn)分別作AC⊥x軸于C,BD⊥x軸于D,根據(jù)反比例函數(shù)系數(shù)k的幾何意義得出S△AOC=S△BOD=×4=1.根據(jù)S四邊形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,得出S△AOB=S梯形ABDC,利用梯形面積公式求出S梯形ABDC=(BD+AC)?CD=×(1+1)×1=2,從而得出S△AOB=2.【詳解】∵A,B是反比例函數(shù)y=在第一象限內(nèi)的圖象上的兩點(diǎn),且A,B兩點(diǎn)的橫坐標(biāo)分別是1和4,∴當(dāng)x=1時,y=1,即A(1,1),當(dāng)x=4時,y=1,即B(4,1),如圖,過A,B兩點(diǎn)分別作AC⊥x軸于C,BD⊥x軸于D,則S△AOC=S△BOD=×4=1,∵S四邊形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,∴S△AOB=S梯形ABDC,∵S梯形ABDC=(BD+AC)?CD=×(1+1)×1=2,∴S△AOB=2,故選B.【點(diǎn)睛】本題考查了反比例函數(shù)中k的幾何意義,反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,梯形的面積,熟知反比例函數(shù)圖象上的點(diǎn)與原點(diǎn)所連的線段、坐標(biāo)軸、向坐標(biāo)軸作垂線所圍成的直角三角形面積S與k的關(guān)系為S=|k|是解題的關(guān)鍵.9、D【解析】①當(dāng)弦AB和CD在圓心同側(cè)時,如圖1,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=12﹣5=7cm;②當(dāng)弦AB和CD在圓心異側(cè)時,如圖2,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=OF+OE=17cm,∴AB與CD之間的距離為7cm或17cm.故選D.點(diǎn)睛:本題考查了勾股定理和垂徑定理的應(yīng)用.此題難度適中,解題的關(guān)鍵是注意掌握數(shù)形結(jié)合思想與分類討論思想的應(yīng)用,小心別漏解.10、B【解析】根據(jù)一次函數(shù)的定義,可得答案.【詳解】設(shè)等腰三角形的底角為y,頂角為x,由題意,得x+2y=180,所以,y=﹣x+90°,即等腰三角形底角與頂角之間的函數(shù)關(guān)系是一次函數(shù)關(guān)系,故選B.【點(diǎn)睛】本題考查了實(shí)際問題與一次函數(shù),根據(jù)題意正確列出函數(shù)關(guān)系式是解題的關(guān)鍵.11、B【解析】試題解析:∵摸到紅色球的頻率穩(wěn)定在15%左右,∴口袋中紅色球的頻率為15%,故紅球的個數(shù)為40×15%=6個.故選B.點(diǎn)睛:由頻數(shù)=數(shù)據(jù)總數(shù)×頻率計算即可.12、A【分析】先把x=1代入方程x2+ax-2b=0得a-2b=-1,然后利用整體代入的方法計算2a-4b的值即可.【詳解】將x=1代入原方程可得:1+a﹣2b=0,∴a﹣2b=﹣1,∴原式=2(a﹣2b)=﹣2,故選:A.【點(diǎn)睛】本題考查了一元二次方程的解的定義.一元二次方程的解就是能夠使方程左右兩邊相等的未知數(shù)的值.二、填空題(每題4分,共24分)13、(3,0).【解析】分析:根據(jù)(0,3)、(2,3)兩點(diǎn)求得對稱軸,再利用對稱性解答即可.詳解:∵拋物線y=ax2+bx+c經(jīng)過(0,3)、(2,3)兩點(diǎn),∴對稱軸x==1;點(diǎn)(﹣1,0)關(guān)于對稱軸對稱點(diǎn)為(3,0),因此它的圖象與x軸的另一個交點(diǎn)坐標(biāo)是(3,0).故答案為(3,0).點(diǎn)睛:本題考查了拋物線與x軸的交點(diǎn),關(guān)鍵是熟練掌握二次函數(shù)的對稱性.14、1【分析】首先連接OA,OB,由PA、PB分別切⊙O于點(diǎn)A、B,根據(jù)切線的性質(zhì)可得:OA⊥PA,OB⊥PB,然后由四邊形的內(nèi)角和等于360°,求得∠AOB的度數(shù),又由圓周角定理,即可求得答案.【詳解】解:連接OA,OB,∵PA、PB分別切⊙O于點(diǎn)A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90°,∴∠AOB=360°﹣∠PAO﹣∠P﹣∠PBO=360°﹣90°﹣100°﹣90°=80°,∴.故答案為:1.【點(diǎn)睛】此題考查了切線的性質(zhì)以及圓周角定理.解題的關(guān)鍵是掌握輔助線的作法,熟練掌握切線的性質(zhì).15、【分析】根據(jù)題意列舉出所有情況,并得出兩球顏色相同的情況,運(yùn)用概率公式進(jìn)行求解.【詳解】解:一次摸出兩個球的所有情況有(紅1,紅2),(紅1,白1),(紅1,白2),(紅2,白1),(紅2,白2),(白1,白2)6種,其中兩球顏色相同的有2種.所以得獎的概率是.故答案為:.【點(diǎn)睛】本題考查概率的概念和求法,熟練掌握概率的概念即概率=所求情況數(shù)與總情況數(shù)之比和求法是解題的關(guān)鍵.16、1.【解析】試題分析:設(shè)此圓錐的底面半徑為r,根據(jù)圓錐的側(cè)面展開圖扇形的弧長等于圓錐底面周長可得,1πr=,解得:r=1cm.故答案是1.考點(diǎn):圓錐的計算.17、55【分析】連接OA,OB,根據(jù)圓周角定理可得解.【詳解】連接OA,OB,∵PA、PB分別切⊙O于點(diǎn)A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90°.∴.∴∠C和∠AOB是同弧所對的圓周角和圓心角,∴∠C=∠AOB=55°.18、1【分析】把x=2代入已知方程求得2a+b的值,然后將其整體代入所求的代數(shù)式并求值即可.【詳解】解:∵關(guān)于x的一元二次方程的解是x=2,∴4a+2b-8=0,則2a+b=4,∴2020+2a+b=2020+(2a+b)=2020+4=1.故答案是:1.【點(diǎn)睛】本題考查了一元二次方程的解定義,以及求代數(shù)式的值,解題時,利用了“整體代入”的數(shù)學(xué)思想.三、解答題(共78分)19、(1)二次函數(shù)的表達(dá)式為:y=x2﹣4x+3;(2)點(diǎn)P的坐標(biāo)為:(0,3+3)或(0,3﹣3)或(0,-3)或(0,0);(3)當(dāng)點(diǎn)M出發(fā)1秒到達(dá)D點(diǎn)時,△MNB面積最大,最大面積是1.此時點(diǎn)N在對稱軸上x軸上方2個單位處或點(diǎn)N在對稱軸上x軸下方2個單位處.【分析】(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程組,解方程組即可得二次函數(shù)的表達(dá)式;(2)先求出點(diǎn)B的坐標(biāo),再根據(jù)勾股定理求得BC的長,當(dāng)△PBC為等腰三角形時分三種情況進(jìn)行討論:①CP=CB;②PB=PC;③BP=BC;分別根據(jù)這三種情況求出點(diǎn)P的坐標(biāo);(3)設(shè)AM=t則DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,把解析式化為頂點(diǎn)式,根據(jù)二次函數(shù)的性質(zhì)即可得△MNB最大面積;此時點(diǎn)M在D點(diǎn),點(diǎn)N在對稱軸上x軸上方2個單位處或點(diǎn)N在對稱軸上x軸下方2個單位處.【詳解】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函數(shù)的表達(dá)式為:y=x2﹣4x+3;(2)令y=0,則x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,點(diǎn)P在y軸上,當(dāng)△PBC為等腰三角形時分三種情況進(jìn)行討論:如圖1,①當(dāng)CP=CB時,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②當(dāng)PB=PC時,OP=OB=3,∴P3(0,-3);③當(dāng)BP=BC時,∵OC=OB=3∴此時P與O重合,∴P4(0,0);綜上所述,點(diǎn)P的坐標(biāo)為:(0,3+3)或(0,3﹣3)或(﹣3,0)或(0,0);(3)如圖2,設(shè)AM=t,由AB=2,得BM=2﹣t,則DN=2t,∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,當(dāng)點(diǎn)M出發(fā)1秒到達(dá)D點(diǎn)時,△MNB面積最大,最大面積是1.此時點(diǎn)N在對稱軸上x軸上方2個單位處或點(diǎn)N在對稱軸上x軸下方2個單位處.20、能,.【分析】根據(jù)平均數(shù)的定義求解可得后兩次數(shù)字之和為8或9;根據(jù)題意畫出樹狀圖,再利用概率公式求其概率.【詳解】能設(shè)第4次、第5次轉(zhuǎn)出的數(shù)字分別為和,根據(jù)題意得:,解得:,所以后兩次數(shù)字之和為8或9;畫出樹狀圖:共有9種等情況數(shù),其中“兩次數(shù)字之和為8或9”的有5種,所以.【點(diǎn)睛】本題考查用列表法或樹狀圖的方法解決概率問題;求一元一次不等式組的方法以及概率公式的運(yùn)用.求出事件的所有情況和符合條件的情況數(shù)是解決本題的關(guān)鍵;用到的知識點(diǎn)為:概率等于所求情況數(shù)與總情況數(shù)之比.21、【解析】試題分析:求角的三角函數(shù)值,可以轉(zhuǎn)化為求直角三角形邊的比,連接DC.根據(jù)同弧所對的圓周角相等,就可以轉(zhuǎn)化為:求直角三角形的銳角的三角函數(shù)值的問題.試題解析:解:連接DC.∵AD是直徑,∴∠ACD=90°.∵∠B=∠D,∴sinB=sinD==.點(diǎn)睛:綜合運(yùn)用了圓周角定理及其推論.注意求一個角的銳角三角函數(shù)時,能夠根據(jù)條件把角轉(zhuǎn)化到一個直角三角形中.22、(1)見解析;(1)△DEF是正三角形;理由見解析;(3)c1=a1+ab+b1【解析】試題分析:(1)由正三角形的性質(zhì)得∠CAB=∠ABC=∠BCA=60°,AB=BC,證出∠ABD=∠BCE,由ASA證明△ABD≌△BCE即可;、(1)由全等三角形的性質(zhì)得出∠ADB=∠BEC=∠CFA,證出∠FDE=∠DEF=∠EFD,即可得出結(jié)論;(3)作AG⊥BD于G,由正三角形的性質(zhì)得出∠ADG=60°,在RtΔADG中,DG=b,AG=b,在RtΔABG中,由勾股定理即可得出結(jié)論.試題解析:(1)△ABD≌△BCE≌△CAF;理由如下:∵△ABC是正三角形,∴∠CAB=∠ABC=∠BCA=60°,AB=BC,∵∠ABD=∠ABC﹣∠1,∠BCE=∠ACB﹣∠3,∠1=∠3,∴∠ABD=∠BCE,在△ABD和△BCE中,,∴△ABD≌△BCE(ASA);(1)△DEF是正三角形;理由如下:∵△ABD≌△BCE≌△CAF,∴∠ADB=∠BEC=∠CFA,∴∠FDE=∠DEF=∠EFD,∴△DEF是正三角形;(3)作AG⊥BD于G,如圖所示:∵△DEF是正三角形,∴∠ADG=60°,在Rt△ADG中,DG=b,AG=b,在Rt△ABG中,c1=(a+b)1+(b)1,∴c1=a1+ab+b1.考點(diǎn):1.全等三角形的判定與性質(zhì);1.勾股定理.23、(1)樣本容量為200,a=50,b=80,c=0.4,圖見解析;(2)800人【分析】(1)由“一般”的頻數(shù)及其頻率可得樣本容量,再根據(jù)頻率=頻數(shù)÷樣本容量及頻數(shù)之和等于總?cè)藬?shù)求解可得;(2)用總?cè)藬?shù)乘以樣本中“不重視”對應(yīng)的頻率即可得.【詳解】(1)樣本容量為60÷0.3=200,則a=200×0.25=50,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年物聯(lián)網(wǎng)平臺開發(fā)與應(yīng)用合同3篇
- 二零二五年度消防安全設(shè)施定期檢測與維護(hù)協(xié)議3篇
- 二零二五年度車輛質(zhì)押擔(dān)保協(xié)議示范文本3篇
- 二零二五年度高端辦公桌椅租賃服務(wù)合同2篇
- 二零二五年鋼鐵供應(yīng)鏈銷售服務(wù)合同樣本3篇
- 二零二五年度特色農(nóng)產(chǎn)品種植基地承包協(xié)議書3篇
- 二零二五年度酒吧兼職收銀員勞動合同范本3篇
- 2025混泥土地坪合同范文
- 二零二五年建筑工地施工現(xiàn)場安全管理與應(yīng)急救援合同3篇
- 2025房屋裝修合同版
- 鉛鋅礦資源的勘查與儲量評估
- 非遺傳統(tǒng)手工藝教學(xué)總結(jié)
- 2023全國重點(diǎn)高中自主招生考試數(shù)學(xué)試卷大全
- 問題樓盤輿情應(yīng)急預(yù)案范文
- 簡述旅游新產(chǎn)品開發(fā)的過程
- IATF16949第五版DFMEA管理程序+潛在失效模式及后果分析程序
- 初一下冊譯林版英語常識和習(xí)語50題練習(xí)題及答含答案
- 板胡演奏介紹
- 分公司“三重一大”事項(xiàng)決策考核評價和后評估辦法(試行)
- 《遵義會議》教學(xué)課件
- 醫(yī)院物業(yè)管理應(yīng)急預(yù)案
評論
0/150
提交評論