幾類微分算子的Friedrichs擴(kuò)張及其辛幾何刻劃的中期報(bào)告_第1頁(yè)
幾類微分算子的Friedrichs擴(kuò)張及其辛幾何刻劃的中期報(bào)告_第2頁(yè)
幾類微分算子的Friedrichs擴(kuò)張及其辛幾何刻劃的中期報(bào)告_第3頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

幾類微分算子的Friedrichs擴(kuò)張及其辛幾何刻劃的中期報(bào)告Abstract:TheFriedrichsextensionofdifferentialoperatorsisawell-studiedoperatortheoreticalconceptthathasbeenextensivelyusedinthestudyofpartialdifferentialequations.ThisreportpresentsapreliminaryinvestigationintotheFriedrichsextensionofaclassofdifferentialoperatorsanditssymplecticgeometrycharacterizationinthemid-term.Introduction:TheconceptofaFriedrichsextensionofadifferentialoperatorwasfirstintroducedbytheGermanmathematicianKurtFriedrichsinthe1930s.Thisextensionisawayofaddingboundaryconditionstoadifferentialoperatorthatmaynothavewell-definedboundaryconditionsassociatedwithit.TheFriedrichsextensionensuresthattheoperatorisself-adjoint,whichisadesirablepropertyinmanycontexts,especiallyinthestudyofpartialdifferentialequations.Inthisreport,wefocusontheFriedrichsextensionofaclassofdifferentialoperatorsthatariseinavarietyofphysicalapplications.Inparticular,weconsideroperatorsoftheformL=-∑i=1n(ai(x)?xi+bi(x))?xi+c(x),(1)wherex=(x1,x2,...,xn)∈?n,ai(x),bi(x)andc(x)aresmoothfunctionson?n.Thisclassofoperatorsarisesinmanyphysicalcontexts,suchasquantummechanics,fluiddynamics,andelasticity.FriedrichsExtension:ToconstructtheFriedrichsextensionoftheoperatorL,wefirstconsidertheoperatorL*givenbyL*=-∑i=1n(?xi(ai(x)u)+bi(x)u)?xi+c(x)u,(2)whereu∈H1(?n)isatestfunction.Here,H1(?n)denotestheSobolevspaceofsquareintegrablefunctionswhosegradientalsoissquareintegrable.TheFriedrichsextensionLFofListhendefinedastheself-adjointoperatorobtainedbyaddingcertainboundaryconditionstoL*.Specifically,werequirethatthedomainofLFsatisfytheboundaryconditions(?/?ni)u+(∑i=1n(ai(x)ni+bi(x))u)=0(3)ontheboundaryof?n,whereni=(0,...,0,1)istheoutwardunitnormalvectortotheboundaryatx.TheoperatorLFisthendefinedastheself-adjointoperatorobtainedbyrestrictingL*tothesetoftestfunctionsthatsatisfytheboundaryconditions(3).SymplecticGeometryCharacterization:Insymplecticgeometry,theHamiltonianflowofaHamiltonianfunctiononaphasespaceisgovernedbyasetofHamilton'sequations,whicharepartialdifferentialequationsoftheform(?H/?qi)(x)=-?pi(x)/?xj,(?H/?pi)(x)=?qi(x)/?xj,whereH(q,p)istheHamiltonianfunction,and(q,p)∈?2nisthephasespace.TheFriedrichsextensionLFoftheoperatorLhasanaturalsymplecticgeometrycharacterizationasaHamiltoniansystemonthephasespaceH1(?n)×H-1(?n)withthesymplecticformω((u1,p1),(u2,p2))=∫?np1(x)?u2(x)/?x-p2(x)?u1(x)/?xdㄧ.Here,H-1(?n)denotesthedualspaceofH1(?n).TheHamiltonianfunctionofthesystemisgivenbyH(u,p)=1/2∫?n(L*u)u+dΣ,(4)wheredΣisthesurfacemeasureontheboundaryof?n.Conclusion:WehavepresentedapreliminaryinvestigationintotheFriedrichsextensionofaclassofdifferentialoperatorsanditssymplecticgeometrycharacterizationinthemid-term.WehaveshownthattheFriedrichsextensionoftheoperatorLisaself-adjointoperatorobtainedbyaddingappropriateboundaryconditionstoacorrespondingadjointoperator.WehavealsoshownthattheFriedrichsextensionhasanaturalsymplecticgeometrycharacterizationasaHamiltoniansystemonanappropriatephasespace.OurfutureworkwillfocusonexaminingthepropertiesoftheHamiltoniansystemassociatedwiththeFriedrichsextension,suchasi

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論