資料科學(xué)基礎(chǔ)英文版課件_第1頁(yè)
資料科學(xué)基礎(chǔ)英文版課件_第2頁(yè)
資料科學(xué)基礎(chǔ)英文版課件_第3頁(yè)
資料科學(xué)基礎(chǔ)英文版課件_第4頁(yè)
資料科學(xué)基礎(chǔ)英文版課件_第5頁(yè)
已閱讀5頁(yè),還剩29頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

FundamentalsofInformationScienceEnglishEditio目錄CONTENCTIntroductiontoDataScienceFoundationsofDataScienceStatisticalMethodsinDataScienceMachineLearninginDataScienceBigDataandDistributedComputingDataScienceApplicationsandCaseStudies01IntroductiontoDataScienceDataScienceisafieldthatcombinesstatistics,computerscience,anddomainexpertisetoanalyzeandinterpretdatatoinformdecisionmakingandsolvecomplexproblemsItinvolvesthecollection,cleaning,analysis,andvisualizationofdatatoidentifypatterns,trends,andinsightsDatascientistsuseadvancedtechniquestoextractmeaningfulinformationfromlargedatasetsandturnitintoactionableintelligenceDefinitionofDataScienceDataSciencehasbecomeessentialintoday'sdata-drivenworld,whereinformationisconsistentlygeneratedandanalyzedtogaincompetitiveadvantageItenablesorganizationstomakeinformeddecisionsbasedondatabackedinsights,improvedecisionmakingprocesses,andidentifynewopportunitiesforgrowthDataSciencealsohelpsinidentifyingrisks,reducinguncertainties,andmakingbetterpredictionsaboutfuturetrendsandoutcomesImportanceofDataScienceThefieldofDataSciencehasevolvedovertheyears,startingfromtheearlydaysofdatamanagementandanalysistothecurrenteraofbigdata,machinelearning,andartificialintelligenceThedevelopmentofnewtechnologiesandtoolshasenableddatascientiststoprocesslargedatasets,applyadvancedanalyticaltechniques,anddevelopmoreSophisticatedmodelsforsolvingcomplexproblemsTheincreasingavailabilityofopensourcetoolsandplatformshasalsocontributedtothegrowthandpopularityofDataScience,makingitmoreaccessibletoawideraudienceEvolutionofDataScience02FoundationsofDataScienceDataTypesandFormatsOverviewofDataTypesandFormats:Datatypesandformatsarethefoundationofdatascience,determiningthewaydataisrepresentedandstored.Commondatatypesincludenumerical,character,date,etc.,whiledataformatsincludeCSV,JSON,XML,etc.Theselectionofdatatypes:Choosingtheappropriatedatatypeandformatiscrucialfordataanalysisandprocessing.Forexample,numericaldataissuitableformathematicalcalculations,whilecharacterdataissuitablefortextanalysisandnaturallanguageprocessing.Advantagesanddisadvantagesofdataformats:Differentdataformatsaresuitablefordifferentapplicationscenarios,eachwithitsownadvantagesanddisadvantages.Forexample,theCSVformatissimpleandeasytoread,butcannotdirectlyrepresentnestedstructures;TheJSONformatcanrepresentcomplexdatastructures,butitmaybeinefficientwhendealingwithbigdata.Conversionofdatatypesandformats:Inpracticalapplications,itmaybenecessarytoconvertdatafromonetypeandformattoanother.Forexample,convertingCSVformatdatatoJSONformatforbetterprocessingandanalysis.DataCollectionandSamplingOverviewofDataCollectionandSampling:Indatascience,datacollectionandsamplingareimportantstepsinobtainingdataforanalysisandmodeling.Themethodsofdatacollectionincludeinvestigation,observation,experimentation,etc.Thechoiceofthesemethodsdependsonthesourceofthedataandthetargetanalysis.Thebasicprinciplesofsampling:Samplingshouldfollowtheprinciplesofrepresentativeness,randomness,andunbiasednesstoensurethatthesamplecanreflecttheoverallsituation.Selectionofsamplingtechniques:Selectappropriatesamplingtechniquesbasedonthecharacteristicsofthedataandanalysisrequirements.Forexample,stratifiedsamplingcanbettercontrolsamplediversity,whilesystematicsamplingcanobtainsamplesmorequickly.Outlierdetectionandhandling:Outliersrefertodatapointsthataresignificantlydifferentfrommostobservedvaluesandmayhaveasignificantimpactontheanalysisresults.Commonmethodsfordetectingoutliersincludestatisticalmethodsanddistancebasedmethods.OverviewofDataPreprocessingandConversion:Indatascience,datapreprocessingandconversionarekeystepsinimprovingdataqualityandconsistency.Missingvalueprocessing:Themethodsforhandlingmissingvaluesincludefillinginmissingvalues,deletingobservationswithmissingvalues,andusinginterpolationtopredictmissingvalues.DataPreprocessingandTransformationFeatureengineeringDatastandardizationandnormalizationDataPreprocessingandTransformationFeatureengineeringreferstotheprocessoftransformingorcombiningrawdatatogeneratenewfeaturesformodeluse.Forexample,convertingtextcommentsintobagofwordsmodelsorTF-IDFrepresentations.Inordertominimizetheimpactofdifferentfeaturescalesonthemodel,itisusuallynecessarytostandardizeornormalizethedata.CommonstandardizationmethodsincludeminimummaximumscalingandZ-scorestandardization.DataExplorationandVisualizationOverviewofDataExplorationandVisualization:Indatascience,dataexplorationandvisualizationareeffectivemeanstohelpusunderstandthestructureandrelationshipsofdata.Commondatavisualizationtoolsandtechniquesincludebarcharts,linecharts,scatterplots,piecharts,andmorecomplextechniquessuchasheatmaps,treecharts,andgeospatialvisualization.Theroleofvisualizationinexploratorydataanalysis:Throughvisualization,thedistribution,outliers,correlations,andtrendsofdatacanbequicklyidentified,providingguidanceforsubsequentdataanalysisandmodeling.Thechallengesandbestpracticesofvisualization:Itisimportanttoavoidmisleadingchartdesignandoverfittingduringthevisualizationprocess.Atthesametime,clear,concise,andpurposefuldesignprinciplesshouldbefollowedtobetterconveyinformation.03StatisticalMethodsinDataScience01Purpose:Summarizeandcommunicateinformationaboutdatasets02primarycoverage03Centraltension:Mean,media,mode04Spread:Standarddeviation,variation05Shape:Skewness,kurtosis06Relationships:Correlation,regressionDescriptiveStatistics010203040545%50%75%85%95%Purpose:DrawconclusionsaboutpopulationfromsampledataprimarycoverageParameterestimation:PointandintervalestimationofpopulationparametersHypothesistesting:nullhypothesistesting,poweranalysisDesignofexperiments:Randomizedcontrolledtrials,qualityexperimentsInferentialStatistics0102030405Purpose:UpdatebeliefsaboutunknownquantitiesusingdataandpriorknowledgeprimarycoveragePriorprobability:ExpressionofbeliefsbeforedataisobservedLikelihoodfunction:DescribeshowdatawouldbeobservedunderdifferenttheoreticalvaluesoftheunknownquantityPosteriorprobability:ExpressionofbeliefsafterdataisobservedBayesianStatistics04MachineLearninginDataScienceSupervisedLearningisatypeofmachinelearningwherethetrainingexamplesarelabeledwiththedesiredoutputThegoalofSupervisedLearningistolearnafunctionthatmapsinputdatatocorrespondingoutputdataCommonSupervisedLearningalgorithmsincludeLinearRegression,LogisticRegression,SupportVectorMachines,andDecisionTreesSupervisedLearningisusedinvariousfieldssuchasclassification,regression,anddensityestimationSupervisedLearningUnsupervisedLearningUnsupervisedLearningisatypeofmachinelearningwherethetrainingexamplesareunlabeledThegoalofUnsupervisedLearningistodiscoverpatternsandstructureswithinthedatawithoutanypriorknowledgeofthedesiredoutputCommonUnsupervisedLearningalgorithmsincludeClustering(e.g.,K-means,HierarchicalClustering),DimensionalityReduction(e.g.,PrincipalComponentAnalysis,t-SNE),andAnomalyDetectionUnsupervisedLearningisusedinvariousfieldssuchasmarketsegmentation,recommendationsystems,andknowledgediscoveryindatabasesSemisupervisedlearningisatypeofmachinelearningthatcombinesbothlabeledandunlabeleddatafortrainingThegoalofSemisupervisedLearningistoleveragetheadvantagesofbothSupervisedandUnsupervisedLearningtoimprovelearningperformanceandreducetherequirementforlabeleddataSemisupervisedLearningCommonSemisupervisedLearningalgorithmsincludeLabelpropagationalgorithmsandPseudolabelingSemisupervisedLearningisusedinvariousfieldssuchassensoryanalysis,imageclassification,andspeechrecognitionSemisupervisedLearningReinforcementLearningisatypeofmachinelearningwhereanagentcontactswithanenvironmenttoachieveaspecificgoalThegoalofReinforcementLearningistolearnapolicythatmaximizesthecumulativerewardreceivedbytheagentovertimeCommonReinforcementLearningalgorithmsincludeQ-learning,Sarsa,DeepQNetwork(DQN),PolicyGradientMethods(e.g.,ActorCritic),andMonteCarloTreeSearch(MCTS)ReinforcementLearningisusedinvariousfieldssuchasrobotics,gameplaying,andautonomousdrivingReinforcementLearning05BigDataandDistributedComputingHDFSisacorecomponentintheHadoopecosystem,providingdistributedstorageandprocessingcapabilitiesforbigdataprocessing.HadoopDistributedFileSystem(HDFS)isahighlyfault-tolerantdistributedfilesystemdesignedtostorelargeamountsofdataonlow-costhardware.Itprovidesredundancyandfaulttolerancebydividingdataintoblocksandstoringthemonmultiplenodes,ensuringthereliabilityandavailabilityofdata.HadoopDistributedFileSystem(HDFS)HDFShashighscalabilityandflexibility,capableofprocessingPBleveldataandsupportingvariousapplications,includingdatawarehousing,searchengines,andreal-timestreamingprocessing.Duetoitsdistributedarchitecture,HDFScaneasilyscaletothousandsofnodesandhandlelarge-scaledatasets.Italsoprovideshighthroughputandlowlatencydataaccess,supportingvariousdataprocessingandanalysisapplications.HadoopDistributedFileSystem(HDFS)Spark:AnOverviewSparkisafastandversatilebigdataprocessingenginethatprovidesrichdataprocessingandanalysiscapabilities.ApacheSparkisanopen-sourcebigdataprocessingframeworkwritteninlanguagessuchasScala,Java,Python,andR.Itprovideshigh-performancedataprocessingcapabilities,supportingvariousworkloadssuchasbatchprocessing,streaming,andmachinelearning.Sparkhasfastdataloading,transformation,andqueryingcapabilities,makingitsuitableforprocessingandanalyzinglarge-scaledatasets.Sparkhashighscalabilityandflexibility,andcanbedeployedinclusterorcloudenvironments,supportingmultipledataprocessingandanalysistasks.Sparkcaneasilyscaletohundredsofnodesandhandlelarge-scaledatasets.ItalsoprovidesrichAPIsandtools,supportingvariousapplicationscenariossuchasdatamining,machinelearning,andimageprocessing.Inaddition,SparkalsoprovidesintegrationcapabilitieswithotherbigdatatechnologiessuchasHadoop,Hive,HBase,etc.Spark:AnOverviewApacheFlinkisastreamprocessingframeworkthatprovidesreal-timedataprocessingandanalysiscapabilities.ApacheFlinkisanopen-sourcestreamprocessingframeworkwritteninlanguagessuchasJavaandScala.Itprovideshigh-performancestreamprocessingcapabilitiesandsupportsreal-timedatastreamprocessingandanalysis.Flinkhaseventtimesemanticsandstatemanagementfunctions,whichcanhandlehigh-speeddatastreamsandensurethereliabilityandconsistencyofdataprocessing.RealtimeProcessingwithApacheFlinkFlinkhashighscalabilityandflexibility,andcanbedeployedinclusterorcloudenvironments,supportingmultiplestreamprocessingandanalysistasks.Flinkcaneasilyscaletohundredsofnodesandhandlelarge-scaledatastreams.ItalsoprovidesrichAPIsandtools,supportingvariousapplicationscenariossuchasreal-timedataanalysis,real-timerecommendations,andreal-timefrauddetection.Inaddition,FlinkalsoprovidesintegrationcapabilitieswithotherbigdatatechnologiessuchasKafka,HDFS,etc.RealtimeProcessingwithApacheFlink06DataScienceApplicationsandCaseStudiesPredictiveAnalyticsinBusinessPredictiveanalyticsisadatadrivenapproachthatusesalgorithmsandstatisticalmethodstoanalyzehistoricaldataandpredictfutureoutcomesIthasbecomeanessentialtoolforbusinessestomakeinformeddecisionsandgaincompetitiveadvantagesBusinessesusepredictiveanalyticstoidentifypatternsandtrendsincustomerbehavior,sales,andotherrelevantdataByanalyzingthisdata,businessescanpredictfutureoutcomes,suchascustomerrevenue,productdemand,ormarkettrendsPredictiveanalyticshelpsbusinessesmakesmartdecisionsbyadvancinginsightsintofuturetrendsandopportunitiesItcanalsoidentifypotentialrisksandthreats,allowingbusinessestotakeproactivemeasurestolimitthemImplementingpredictiveanalyticsrequiresacombinationofdatascienceexpertise,advancedstatisticalmethods,andappropriatetoolsandtechnologiesBusinessescanleveragethepowerofpredictiveanalyticsbypartneringwithdatascienceconsultantsorbuildinginternalcapabilitiesRecommendationSystemsinE-CommerceRecommendationsystemsareakeycomponentofe-commerceplatforms,astheyhelpcustomersfindrelevantproductsandservicesbasedontheirpreferencesandneedsThesesystemsanalyzeuserbehavior,preferences,andtransactionhistorytomakepersonalizedrecommendationsByunderstandingcustomerpreferencesandbehaviors,e-commerceplatformscanpresentrelevantoffersandsugge

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論