版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆防城港市重點(diǎn)中學(xué)高三六校第一次聯(lián)考數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,為兩條不同直線,,,為三個(gè)不同平面,下列命題:①若,,則;②若,,則;③若,,則;④若,,則.其中正確命題序號(hào)為()A.②③ B.②③④ C.①④ D.①②③2.已知拋物線上一點(diǎn)的縱坐標(biāo)為4,則點(diǎn)到拋物線焦點(diǎn)的距離為()A.2 B.3 C.4 D.53.正項(xiàng)等差數(shù)列的前和為,已知,則=()A.35 B.36 C.45 D.544.已知集合,,則()A. B.C.或 D.5.復(fù)數(shù)滿足為虛數(shù)單位),則的虛部為()A. B. C. D.6.如圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額(單位:億元)的折線圖.則下列結(jié)論中表述不正確的是()A.從2000年至2016年,該地區(qū)環(huán)境基礎(chǔ)設(shè)施投資額逐年增加;B.2011年該地區(qū)環(huán)境基礎(chǔ)設(shè)施的投資額比2000年至2004年的投資總額還多;C.2012年該地區(qū)基礎(chǔ)設(shè)施的投資額比2004年的投資額翻了兩番;D.為了預(yù)測(cè)該地區(qū)2019年的環(huán)境基礎(chǔ)設(shè)施投資額,根據(jù)2010年至2016年的數(shù)據(jù)(時(shí)間變量t的值依次為)建立了投資額y與時(shí)間變量t的線性回歸模型,根據(jù)該模型預(yù)測(cè)該地區(qū)2019的環(huán)境基礎(chǔ)設(shè)施投資額為256.5億元.7.是正四面體的面內(nèi)一動(dòng)點(diǎn),為棱中點(diǎn),記與平面成角為定值,若點(diǎn)的軌跡為一段拋物線,則()A. B. C. D.8.已知復(fù)數(shù),為的共軛復(fù)數(shù),則()A. B. C. D.9.已知復(fù)數(shù)滿足,則的最大值為()A. B. C. D.610.記集合和集合表示的平面區(qū)域分別是和,若在區(qū)域內(nèi)任取一點(diǎn),則該點(diǎn)落在區(qū)域的概率為()A. B. C. D.11.已知復(fù)數(shù)滿足(其中為的共軛復(fù)數(shù)),則的值為()A.1 B.2 C. D.12.在復(fù)平面內(nèi),復(fù)數(shù)(,)對(duì)應(yīng)向量(O為坐標(biāo)原點(diǎn)),設(shè),以射線Ox為始邊,OZ為終邊旋轉(zhuǎn)的角為,則,法國(guó)數(shù)學(xué)家棣莫弗發(fā)現(xiàn)了棣莫弗定理:,,則,由棣莫弗定理可以導(dǎo)出復(fù)數(shù)乘方公式:,已知,則()A. B.4 C. D.16二、填空題:本題共4小題,每小題5分,共20分。13.已知是拋物線上一點(diǎn),是圓關(guān)于直線對(duì)稱的曲線上任意一點(diǎn),則的最小值為_(kāi)_______.14.若,則____.15.近年來(lái),新能源汽車(chē)技術(shù)不斷推陳出新,新產(chǎn)品不斷涌現(xiàn),在汽車(chē)市場(chǎng)上影響力不斷增大.動(dòng)力蓄電池技術(shù)作為新能源汽車(chē)的核心技術(shù),它的不斷成熟也是推動(dòng)新能源汽車(chē)發(fā)展的主要?jiǎng)恿?假定現(xiàn)在市售的某款新能源汽車(chē)上,車(chē)載動(dòng)力蓄電池充放電循環(huán)次數(shù)達(dá)到2000次的概率為85%,充放電循環(huán)次數(shù)達(dá)到2500次的概率為35%.若某用戶的自用新能源汽車(chē)已經(jīng)經(jīng)過(guò)了2000次充電,那么他的車(chē)能夠充電2500次的概率為_(kāi)_____.16.已知,,且,則的最小值是______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)函數(shù)其中(Ⅰ)若曲線在點(diǎn)處切線的傾斜角為,求的值;(Ⅱ)已知導(dǎo)函數(shù)在區(qū)間上存在零點(diǎn),證明:當(dāng)時(shí),.18.(12分)已知函數(shù).(1)若,求的取值范圍;(2)若,對(duì),不等式恒成立,求的取值范圍.19.(12分)已知分別是的內(nèi)角的對(duì)邊,且.(Ⅰ)求.(Ⅱ)若,,求的面積.(Ⅲ)在(Ⅱ)的條件下,求的值.20.(12分)如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,以橢圓C左頂點(diǎn)T為圓心作圓,設(shè)圓T與橢圓C交于點(diǎn)M與點(diǎn)N.(1)求橢圓C的方程;(2)求的最小值,并求此時(shí)圓T的方程;(3)設(shè)點(diǎn)P是橢圓C上異于M,N的任意一點(diǎn),且直線MP,NP分別與x軸交于點(diǎn)R,S,O為坐標(biāo)原點(diǎn),求證:為定值.21.(12分)已知函數(shù).(1)求函數(shù)的最小正周期以及單調(diào)遞增區(qū)間;(2)已知,若,,,求的面積.22.(10分)如圖,在四面體中,.(1)求證:平面平面;(2)若,二面角為,求異面直線與所成角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
根據(jù)直線與平面,平面與平面的位置關(guān)系進(jìn)行判斷即可.【詳解】根據(jù)面面平行的性質(zhì)以及判定定理可得,若,,則,故①正確;若,,平面可能相交,故②錯(cuò)誤;若,,則可能平行,故③錯(cuò)誤;由線面垂直的性質(zhì)可得,④正確;故選:C【點(diǎn)睛】本題主要考查了判斷直線與平面,平面與平面的位置關(guān)系,屬于中檔題.2、D【解析】試題分析:拋物線焦點(diǎn)在軸上,開(kāi)口向上,所以焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為,因?yàn)辄c(diǎn)A的縱坐標(biāo)為4,所以點(diǎn)A到拋物線準(zhǔn)線的距離為,因?yàn)閽佄锞€上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,所以點(diǎn)A與拋物線焦點(diǎn)的距離為5.考點(diǎn):本小題主要考查應(yīng)用拋物線定義和拋物線上點(diǎn)的性質(zhì)拋物線上的點(diǎn)到焦點(diǎn)的距離,考查學(xué)生的運(yùn)算求解能力.點(diǎn)評(píng):拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,這條性質(zhì)在解題時(shí)經(jīng)常用到,可以簡(jiǎn)化運(yùn)算.3、C【解析】
由等差數(shù)列通項(xiàng)公式得,求出,再利用等差數(shù)列前項(xiàng)和公式能求出.【詳解】正項(xiàng)等差數(shù)列的前項(xiàng)和,,,解得或(舍),,故選C.【點(diǎn)睛】本題主要考查等差數(shù)列的性質(zhì)與求和公式,屬于中檔題.解等差數(shù)列問(wèn)題要注意應(yīng)用等差數(shù)列的性質(zhì)()與前項(xiàng)和的關(guān)系.4、D【解析】
首先求出集合,再根據(jù)補(bǔ)集的定義計(jì)算可得;【詳解】解:∵,解得∴,∴.故選:D【點(diǎn)睛】本題考查補(bǔ)集的概念及運(yùn)算,一元二次不等式的解法,屬于基礎(chǔ)題.5、C【解析】
,分子分母同乘以分母的共軛復(fù)數(shù)即可.【詳解】由已知,,故的虛部為.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,考查學(xué)生的基本運(yùn)算能力,是一道基礎(chǔ)題.6、D【解析】
根據(jù)圖像所給的數(shù)據(jù),對(duì)四個(gè)選項(xiàng)逐一進(jìn)行分析排除,由此得到表述不正確的選項(xiàng).【詳解】對(duì)于選項(xiàng),由圖像可知,投資額逐年增加是正確的.對(duì)于選項(xiàng),投資總額為億元,小于年的億元,故描述正確.年的投資額為億,翻兩翻得到,故描述正確.對(duì)于選項(xiàng),令代入回歸直線方程得億元,故選項(xiàng)描述不正確.所以本題選D.【點(diǎn)睛】本小題主要考查圖表分析能力,考查利用回歸直線方程進(jìn)行預(yù)測(cè)的方法,屬于基礎(chǔ)題.7、B【解析】
設(shè)正四面體的棱長(zhǎng)為,建立空間直角坐標(biāo)系,求出各點(diǎn)的坐標(biāo),求出面的法向量,設(shè)的坐標(biāo),求出向量,求出線面所成角的正弦值,再由角的范圍,結(jié)合為定值,得出為定值,且的軌跡為一段拋物線,所以求出坐標(biāo)的關(guān)系,進(jìn)而求出正切值.【詳解】由題意設(shè)四面體的棱長(zhǎng)為,設(shè)為的中點(diǎn),以為坐標(biāo)原點(diǎn),以為軸,以為軸,過(guò)垂直于面的直線為軸,建立如圖所示的空間直角坐標(biāo)系,則可得,,取的三等分點(diǎn)、如圖,則,,,,所以、、、、,由題意設(shè),,和都是等邊三角形,為的中點(diǎn),,,,平面,為平面的一個(gè)法向量,因?yàn)榕c平面所成角為定值,則,由題意可得,因?yàn)榈能壽E為一段拋物線且為定值,則也為定值,,可得,此時(shí),則,.故選:B.【點(diǎn)睛】考查線面所成的角的求法,及正切值為定值時(shí)的情況,屬于中等題.8、C【解析】
求出,直接由復(fù)數(shù)的代數(shù)形式的乘除運(yùn)算化簡(jiǎn)復(fù)數(shù).【詳解】.故選:C【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)形式的四則運(yùn)算,共軛復(fù)數(shù),屬于基礎(chǔ)題.9、B【解析】
設(shè),,利用復(fù)數(shù)幾何意義計(jì)算.【詳解】設(shè),由已知,,所以點(diǎn)在單位圓上,而,表示點(diǎn)到的距離,故.故選:B.【點(diǎn)睛】本題考查求復(fù)數(shù)模的最大值,其實(shí)本題可以利用不等式來(lái)解決.10、C【解析】
據(jù)題意可知,是與面積有關(guān)的幾何概率,要求落在區(qū)域內(nèi)的概率,只要求、所表示區(qū)域的面積,然后代入概率公式,計(jì)算即可得答案.【詳解】根據(jù)題意可得集合所表示的區(qū)域即為如圖所表示:的圓及內(nèi)部的平面區(qū)域,面積為,集合,,表示的平面區(qū)域即為圖中的,,根據(jù)幾何概率的計(jì)算公式可得,故選:C.【點(diǎn)睛】本題主要考查了幾何概率的計(jì)算,本題是與面積有關(guān)的幾何概率模型.解決本題的關(guān)鍵是要準(zhǔn)確求出兩區(qū)域的面積.11、D【解析】
按照復(fù)數(shù)的運(yùn)算法則先求出,再寫(xiě)出,進(jìn)而求出.【詳解】,,.故選:D【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算、共軛復(fù)數(shù)及復(fù)數(shù)的模,考查基本運(yùn)算能力,屬于基礎(chǔ)題.12、D【解析】
根據(jù)復(fù)數(shù)乘方公式:,直接求解即可.【詳解】,.故選:D【點(diǎn)睛】本題考查了復(fù)數(shù)的新定義題目、同時(shí)考查了復(fù)數(shù)模的求法,解題的關(guān)鍵是理解棣莫弗定理,將復(fù)數(shù)化為棣莫弗定理形式,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意求出圓的對(duì)稱圓的圓心坐標(biāo),求出對(duì)稱圓的圓坐標(biāo)到拋物線上的點(diǎn)的距離的最小值,減去半徑即可得到的最小值.【詳解】假設(shè)圓心關(guān)于直線對(duì)稱的點(diǎn)為,則有,解方程組可得,所以曲線的方程為,圓心為,設(shè),則,又,所以,,即,所以,故答案為:.【點(diǎn)睛】該題考查的是有關(guān)動(dòng)點(diǎn)距離的最小值問(wèn)題,涉及到的知識(shí)點(diǎn)有點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),點(diǎn)與圓上點(diǎn)的距離的最小值為到圓心的距離減半徑,屬于中檔題目.14、【解析】
由,得出,根據(jù)兩角和與差的正弦公式和余弦公式化簡(jiǎn),再利用齊次式即可求出結(jié)果.【詳解】因?yàn)?,所以,所?故答案為:.【點(diǎn)睛】本題考查三角函數(shù)化簡(jiǎn)求值,利用二倍角正切公式、兩角和與差的正弦公式和余弦公式,以及運(yùn)用齊次式求值,屬于對(duì)公式的考查以及對(duì)計(jì)算能力的考查.15、【解析】
記“某用戶的自用新能源汽車(chē)已經(jīng)經(jīng)過(guò)了2000次充電”為事件A,“他的車(chē)能夠充電2500次”為事件B,即求條件概率:,由條件概率公式即得解.【詳解】記“某用戶的自用新能源汽車(chē)已經(jīng)經(jīng)過(guò)了2000次充電”為事件A,“他的車(chē)能夠充電2500次”為事件B,即求條件概率:故答案為:【點(diǎn)睛】本題考查了條件概率的應(yīng)用,考查了學(xué)生概念理解,數(shù)學(xué)應(yīng)用,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.16、8【解析】
由整體代入法利用基本不等式即可求得最小值.【詳解】,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故的最小值為8,故答案為:8.【點(diǎn)睛】本題考查基本不等式求和的最小值,整體代入法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ);(Ⅱ)證明見(jiàn)解析【解析】
(Ⅰ)求導(dǎo)得到,,解得答案.(Ⅱ),故,在上單調(diào)遞減,在上單調(diào)遞增,,設(shè),證明函數(shù)單調(diào)遞減,故,得到證明.【詳解】(Ⅰ),故,,故.(Ⅱ),即,存在唯一零點(diǎn),設(shè)零點(diǎn)為,故,即,在上單調(diào)遞減,在上單調(diào)遞增,故,設(shè),則,設(shè),則,單調(diào)遞減,,故恒成立,故單調(diào)遞減.,故當(dāng)時(shí),.【點(diǎn)睛】本題考查了函數(shù)的切線問(wèn)題,利用導(dǎo)數(shù)證明不等式,轉(zhuǎn)化為函數(shù)的最值是解題的關(guān)鍵.18、(1);(2).【解析】
(1)分類(lèi)討論,,,即可得出結(jié)果;(2)先由題意,將問(wèn)題轉(zhuǎn)化為即可,再求出,的最小值,解不等式即可得出結(jié)果.【詳解】(1)由得,若,則,顯然不成立;若,則,,即;若,則,即,顯然成立,綜上所述,的取值范圍是.(2)由題意知,要使得不等式恒成立,只需,當(dāng)時(shí),,所以;因?yàn)?,所以,解得,結(jié)合,所以的取值范圍是.【點(diǎn)睛】本題主要考查含絕對(duì)值不等式的解法,以及由不等式恒成立求參數(shù)的問(wèn)題,熟記分類(lèi)討論的思想、以及絕對(duì)值不等式的性質(zhì)即可,屬于??碱}型.19、(Ⅰ);(Ⅱ);(Ⅲ).【解析】
(Ⅰ)由已知結(jié)合正弦定理先進(jìn)行代換,然后結(jié)合和差角公式及正弦定理可求;(Ⅱ)由余弦定理可求,然后結(jié)合三角形的面積公式可求;(Ⅲ)結(jié)合二倍角公式及和角余弦公式即可求解.【詳解】(Ⅰ)因?yàn)?,所以,所以,由正弦定理可得,;(Ⅱ)由余弦定理可得,,整理可得,,解可得,,因?yàn)?,所以;(Ⅲ)由于,.所以.【點(diǎn)睛】本題主要考查了正弦定理、余弦定理、和角余弦公式,二倍角公式及三角形的面積公式的綜合應(yīng)用,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.20、(1);(2);(3)【解析】
(1)依題意,得,,由此能求出橢圓C的方程.(2)點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱,設(shè),,設(shè),由于點(diǎn)在橢圓C上,故,由,知,由此能求出圓T的方程.(3)設(shè),則直線MP的方程為:,令,得,同理:,由此能證明為定值.【詳解】(1)依題意,得,,,故橢圓C的方程為.(2)點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱,設(shè),,設(shè),由于點(diǎn)在橢圓C上,所以,由,則,.由于,故當(dāng)時(shí),的最小值為,所以,故,又點(diǎn)在圓T上,代入圓的方程得到.故圓T的方程為:(3)設(shè),則直線MP的方程為:,令,得,同理:.故又點(diǎn)與點(diǎn)在橢圓上,故,代入上式得:,所以【點(diǎn)睛】本題考查了橢圓的幾何性質(zhì)、圓的軌跡方程、直線與橢圓的位置關(guān)系中定值問(wèn)題,考查了學(xué)生的計(jì)算能力,屬于中檔題.21、(1)最小正周期為,單調(diào)遞增區(qū)間為;(2).【解析】
(1)利用三角恒等變換思想化簡(jiǎn)函數(shù)的解析式為,利用正弦型函數(shù)的周期公式可求得函數(shù)的最小正周期,解不等式可求得該函數(shù)的單調(diào)遞增區(qū)間;(2)由求得,由得出或,分兩種情況討論,結(jié)合余弦定理解三角形,進(jìn)行利用三角形的面積公式可求得的面積.【詳解】(1),所以,函數(shù)的最小正周期為,由得,因此,函數(shù)的單調(diào)遞增區(qū)間為;(2)由,得,或,或,,,又,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 云南旅游職業(yè)學(xué)院《移動(dòng)機(jī)器人導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷
- 辦公技術(shù)新動(dòng)向模板
- 述職報(bào)告:智慧農(nóng)業(yè)實(shí)踐
- 職業(yè)導(dǎo)論-房地產(chǎn)經(jīng)紀(jì)人《職業(yè)導(dǎo)論》點(diǎn)睛提分卷2
- 心理協(xié)會(huì)辯論賽策劃書(shū)
- 二零二五年度家庭養(yǎng)老照護(hù)床位服務(wù)與環(huán)保材料采購(gòu)協(xié)議3篇
- 人教版小學(xué)數(shù)學(xué)(2024)一年級(jí)下冊(cè)第一單元 認(rèn)識(shí)平面圖形綜合素養(yǎng)測(cè)評(píng) B卷(含答案)
- 2024-2025學(xué)年吉林省長(zhǎng)春五中高三(上)期末數(shù)學(xué)試卷(含答案)
- 江西省贛州市大余縣2024-2025學(xué)年七年級(jí)上學(xué)期1月期末生物學(xué)試題(含答案)
- 二零二五年酒店客房入住體驗(yàn)提升合作協(xié)議2篇
- 光伏電站環(huán)境保護(hù)施工方案
- 上海南洋模范2025屆高二生物第一學(xué)期期末檢測(cè)模擬試題含解析
- 網(wǎng)絡(luò)與信息安全管理責(zé)任制度
- 2024-2025學(xué)年五年級(jí)科學(xué)上冊(cè)第二單元《地球表面的變化》測(cè)試卷(教科版)
- 小區(qū)物業(yè)服務(wù)投標(biāo)方案(技術(shù)標(biāo))
- 2025屆高考數(shù)學(xué)一輪復(fù)習(xí)建議-函數(shù)與導(dǎo)數(shù)專題講座課件
- 心電圖基本知識(shí)
- 中煤電力有限公司招聘筆試題庫(kù)2024
- 消防接警員應(yīng)知應(yīng)會(huì)考試題庫(kù)大全-上(單選、多選題)
- 2024風(fēng)電場(chǎng)在役葉片維修全過(guò)程質(zhì)量控制技術(shù)要求
- 湖南省岳陽(yáng)市岳陽(yáng)樓區(qū)2023-2024學(xué)年七年級(jí)下學(xué)期期末數(shù)學(xué)試題(解析版)
評(píng)論
0/150
提交評(píng)論