版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆湖北省宜昌市西陵區(qū)葛洲壩中學高三下第一次測試數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.1777年,法國科學家蒲豐在宴請客人時,在地上鋪了一張白紙,上面畫著一條條等距離的平行線,而他給每個客人發(fā)許多等質量的,長度等于相鄰兩平行線距離的一半的針,讓他們隨意投放.事后,蒲豐對針落地的位置進行統計,發(fā)現共投針2212枚,與直線相交的有704枚.根據這次統計數據,若客人隨意向這張白紙上投放一根這樣的針,則針落地后與直線相交的概率約為()A. B. C. D.2.已知甲、乙兩人獨立出行,各租用共享單車一次(假定費用只可能為、、元).甲、乙租車費用為元的概率分別是、,甲、乙租車費用為元的概率分別是、,則甲、乙兩人所扣租車費用相同的概率為()A. B. C. D.3.中,,為的中點,,,則()A. B. C. D.24.某單位去年的開支分布的折線圖如圖1所示,在這一年中的水、電、交通開支(單位:萬元)如圖2所示,則該單位去年的水費開支占總開支的百分比為()A. B. C. D.5.是平面上的一定點,是平面上不共線的三點,動點滿足,,則動點的軌跡一定經過的()A.重心 B.垂心 C.外心 D.內心6.已知直線,,則“”是“”的A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件7.函數的部分圖象如圖所示,則()A.6 B.5 C.4 D.38.對于任意,函數滿足,且當時,函數.若,則大小關系是()A. B. C. D.9.在關于的不等式中,“”是“恒成立”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.已知,若方程有唯一解,則實數的取值范圍是()A. B.C. D.11.已知,復數,,且為實數,則()A. B. C.3 D.-312.已知拋物線:的焦點為,準線為,是上一點,直線與拋物線交于,兩點,若,則為()A. B.40 C.16 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,分別是橢圓:()的左、右焦點,過左焦點的直線與橢圓交于、兩點,且,,則橢圓的離心率為__________.14.安排名男生和名女生參與完成項工作,每人參與一項,每項工作至少由名男生和名女生完成,則不同的安排方式共有________種(用數字作答).15.的展開式中項的系數為_______.16.若關于的不等式在上恒成立,則的最大值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)選修4-4:坐標系與參數方程:在平面直角坐標系中,曲線:(為參數),在以平面直角坐標系的原點為極點、軸的正半軸為極軸,且與平面直角坐標系取相同單位長度的極坐標系中,曲線:.(1)求曲線的普通方程以及曲線的平面直角坐標方程;(2)若曲線上恰好存在三個不同的點到曲線的距離相等,求這三個點的極坐標.18.(12分)已知函數(1)若對任意恒成立,求實數的取值范圍;(2)求證:19.(12分)某單位準備購買三臺設備,型號分別為已知這三臺設備均使用同一種易耗品,提供設備的商家規(guī)定:可以在購買設備的同時購買該易耗品,每件易耗品的價格為100元,也可以在設備使用過程中,隨時單獨購買易耗品,每件易耗品的價格為200元.為了決策在購買設備時應購買的易耗品的件數.該單位調查了這三種型號的設備各60臺,調査每臺設備在一個月中使用的易耗品的件數,并得到統計表如下所示.每臺設備一個月中使用的易耗品的件數678型號A30300頻數型號B203010型號C04515將調查的每種型號的設備的頻率視為概率,各臺設備在易耗品的使用上相互獨立.(1)求該單位一個月中三臺設備使用的易耗品總數超過21件的概率;(2)以該單位一個月購買易耗品所需總費用的期望值為決策依據,該單位在購買設備時應同時購買20件還是21件易耗品?20.(12分)如圖為某大江的一段支流,岸線與近似滿足∥,寬度為.圓為江中的一個半徑為的小島,小鎮(zhèn)位于岸線上,且滿足岸線,.現計劃建造一條自小鎮(zhèn)經小島至對岸的水上通道(圖中粗線部分折線段,在右側),為保護小島,段設計成與圓相切.設.(1)試將通道的長表示成的函數,并指出定義域;(2)若建造通道的費用是每公里100萬元,則建造此通道最少需要多少萬元?21.(12分)設(1)當時,求不等式的解集;(2)若,求的取值范圍.22.(10分)已知曲線,直線:(為參數).(I)寫出曲線的參數方程,直線的普通方程;(II)過曲線上任意一點作與夾角為的直線,交于點,的最大值與最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據統計數據,求出頻率,用以估計概率.【詳解】.故選:D.【點睛】本題以數學文化為背景,考查利用頻率估計概率,屬于基礎題.2、B【解析】
甲、乙兩人所扣租車費用相同即同為1元,或同為2元,或同為3元,由獨立事件的概率公式計算即得.【詳解】由題意甲、乙租車費用為3元的概率分別是,∴甲、乙兩人所扣租車費用相同的概率為.故選:B.【點睛】本題考查獨立性事件的概率.掌握獨立事件的概率乘法公式是解題基礎.3、D【解析】
在中,由正弦定理得;進而得,在中,由余弦定理可得.【詳解】在中,由正弦定理得,得,又,所以為銳角,所以,,在中,由余弦定理可得,.故選:D【點睛】本題主要考查了正余弦定理的應用,考查了學生的運算求解能力.4、A【解析】
由折線圖找出水、電、交通開支占總開支的比例,再計算出水費開支占水、電、交通開支的比例,相乘即可求出水費開支占總開支的百分比.【詳解】水費開支占總開支的百分比為.故選:A【點睛】本題考查折線圖與柱形圖,屬于基礎題.5、B【解析】
解出,計算并化簡可得出結論.【詳解】λ(),∴,∴,即點P在BC邊的高上,即點P的軌跡經過△ABC的垂心.故選B.【點睛】本題考查了平面向量的數量積運算在幾何中的應用,根據條件中的角計算是關鍵.6、C【解析】
先得出兩直線平行的充要條件,根據小范圍可推導出大范圍,可得到答案.【詳解】直線,,的充要條件是,當a=2時,化簡后發(fā)現兩直線是重合的,故舍去,最終a=-1.因此得到“”是“”的充分必要條件.故答案為C.【點睛】判斷充要條件的方法是:①若p?q為真命題且q?p為假命題,則命題p是命題q的充分不必要條件;②若p?q為假命題且q?p為真命題,則命題p是命題q的必要不充分條件;③若p?q為真命題且q?p為真命題,則命題p是命題q的充要條件;④若p?q為假命題且q?p為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關系.7、A【解析】
根據正切函數的圖象求出A、B兩點的坐標,再求出向量的坐標,根據向量數量積的坐標運算求出結果.【詳解】由圖象得,令=0,即=kπ,k=0時解得x=2,令=1,即,解得x=3,∴A(2,0),B(3,1),∴,∴.故選:A.【點睛】本題考查正切函數的圖象,平面向量數量積的運算,屬于綜合題,但是難度不大,解題關鍵是利用圖象與正切函數圖象求出坐標,再根據向量數量積的坐標運算可得結果,屬于簡單題.8、A【解析】
由已知可得的單調性,再由可得對稱性,可求出在單調性,即可求出結論.【詳解】對于任意,函數滿足,因為函數關于點對稱,當時,是單調增函數,所以在定義域上是單調增函數.因為,所以,.故選:A.【點睛】本題考查利用函數性質比較函數值的大小,解題的關鍵要掌握函數對稱性的代數形式,屬于中檔題..9、C【解析】
討論當時,是否恒成立;討論當恒成立時,是否成立,即可選出正確答案.【詳解】解:當時,,由開口向上,則恒成立;當恒成立時,若,則不恒成立,不符合題意,若時,要使得恒成立,則,即.所以“”是“恒成立”的充要條件.故選:C.【點睛】本題考查了命題的關系,考查了不等式恒成立問題.對于探究兩個命題的關系時,一般分成兩步,若,則推出是的充分條件;若,則推出是的必要條件.10、B【解析】
求出的表達式,畫出函數圖象,結合圖象以及二次方程實根的分布,求出的范圍即可.【詳解】解:令,則,則,故,如圖示:由,得,函數恒過,,由,,可得,,,若方程有唯一解,則或,即或;當即圖象相切時,根據,,解得舍去),則的范圍是,故選:.【點睛】本題考查函數的零點問題,考查函數方程的轉化思想和數形結合思想,屬于中檔題.11、B【解析】
把和代入再由復數代數形式的乘法運算化簡,利用虛部為0求得m值.【詳解】因為為實數,所以,解得.【點睛】本題考查復數的概念,考查運算求解能力.12、D【解析】
如圖所示,過分別作于,于,利用和,聯立方程組計算得到答案.【詳解】如圖所示:過分別作于,于.,則,根據得到:,即,根據得到:,即,解得,,故.故選:.【點睛】本題考查了拋物線中弦長問題,意在考查學生的計算能力和轉化能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設,則,,由知,,,作,垂足為C,則C為的中點,在和中分別求出,進而求出的關系式,即可求出橢圓的離心率.【詳解】如圖,設,則,,由橢圓定義知,,因為,所以,,作,垂足為C,則C為的中點,在中,因為,所以,在中,由余弦定理可得,,即,解得,所以橢圓的離心率為.故答案為:【點睛】本題考查橢圓的離心率和直線與橢圓的位置關系;利用橢圓的定義,結合焦點三角形和余弦定理是求解本題的關鍵;屬于中檔題、??碱}型.14、1296【解析】
先從4個男生選2個一組,將4人分成三組,然后從4個女生選2個一組,將4人分成三組,然后全排列即可.【詳解】由于每項工作至少由名男生和名女生完成,則先從4個男生選2個一組,將4人分成三組,所以男生的排法共有,同理女生的排法共有,故不同的安排共有種.故答案為:1296【點睛】本題主要考查了排列組合的應用,考查了學生應用數學解決實際問題的能力.15、40【解析】
根據二項定理展開式,求得r的值,進而求得系數.【詳解】根據二項定理展開式的通項式得所以,解得所以系數【點睛】本題考查了二項式定理的簡單應用,屬于基礎題.16、【解析】
分類討論,時不合題意;時求導,求出函數的單調區(qū)間,得到在上的最小值,利用不等式恒成立轉化為函數最小值,化簡得,構造放縮函數對自變量再研究,可解,【詳解】令;當時,,不合題意;當時,,令,得或,所以在區(qū)間和上單調遞減.因為,且在區(qū)間上單調遞增,所以在處取極小值,即最小值為.若,,則,即.當時,,當時,則.設,則.當時,;當時,,所以在上單調遞增;在上單調遞減,所以,即,所以的最大值為.故答案為:【點睛】本題考查不等式恒成立問題.不等式恒成立問題的求解思路:已知不等式(為實參數)對任意的恒成立,求參數的取值范圍.利用導數解決此類問題可以運用分離參數法;如果無法分離參數,可以考慮對參數或自變量進行分類討論求解,如果是二次不等式恒成立的問題,可以考慮二次項系數與判別式的方法(,或,)求解.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2),,.【解析】
(1)把曲線的參數方程與曲線的極坐標方程分別轉化為直角坐標方程;(2)利用圖象求出三個點的極徑與極角.【詳解】解:(1)由消去參數得,即曲線的普通方程為,又由得即為,即曲線的平面直角坐標方程為(2)∵圓心到曲線:的距離,如圖所示,所以直線與圓的切點以及直線與圓的兩個交點,即為所求.∵,則,直線的傾斜角為,即點的極角為,所以點的極角為,點的極角為,所以三個點的極坐標為,,.【點睛】本題考查圓的參數方程和普通方程的轉化、直線極坐標方程和直角坐標方程的轉化,消去參數方程中的參數,就可把參數方程化為普通方程,消去參數的常用方法有:①代入消元法;②加減消元法;③乘除消元法;④三角恒等式消元法,極坐標方程化為直角坐標方程,只要將和換成和即可.18、(1);(2)見解析.【解析】
(1)將問題轉化為對任意恒成立,換元構造新函數即可得解;(2)結合(1)可得,令,求導后證明其導函數單調遞增,結合,即可得函數的單調區(qū)間和最小值,即可得證.【詳解】(1)對任意恒成立等價于對任意恒成立,令,,則,當時,,單調遞增;當時,,單調遞減;有最大值,.(2)證明:由(1)知,當時,即,,,令,則,令,則,在上是增函數,又,當時,;當時,,在上是減函數,在上是增函數,,即,.【點睛】本題考查了利用導數解決恒成立問題,考查了利用導數證明不等式,考查了計算能力和轉化化歸思想,屬于中檔題.19、(1)(2)應該購買21件易耗品【解析】
(1)由統計表中數據可得型號分別為在一個月使用易耗品的件數為6,7,8時的概率,設該單位三臺設備一個月中使用易耗品的件數總數為X,則,利用獨立事件概率公式進而求解即可;(2)由題可得X所有可能的取值為,即可求得對應的概率,再分別討論該單位在購買設備時應同時購買20件易耗品和21件易耗品時總費用的可能取值及期望,即可分析求解.【詳解】(1)由題中的表格可知A型號的設備一個月使用易耗品的件數為6和7的頻率均為;B型號的設備一個月使用易耗品的件數為6,7,8的頻率分別為;C型號的設備一個月使用易耗品的件數為7和8的頻率分別為;設該單位一個月中三臺設備使用易耗品的件數分別為,則,,,設該單位三臺設備一個月中使用易耗品的件數總數為X,則而,,故,即該單位一個月中三臺設備使用的易耗品總數超過21件的概率為.(2)以題意知,X所有可能的取值為;;;由(1)知,,若該單位在購買設備的同時購買了20件易耗品,設該單位一個月中購買易耗品所需的總費用為元,則的所有可能取值為,;;;;;若該單位在肋買設備的同時購買了21件易耗品,設該單位一個月中購買易耗品所需的總費用為元,則的所有可能取值為,;;;;,所以該單位在購買設備時應該購買21件易耗品【點睛】本題考查獨立事件的概率,考查離散型隨機變量的分布列和期望,考查數據處理能力.20、(1),定義域是.(2)百萬【解析】
(1)以為原點,直線為軸建立如圖所示的直角坐標系,設,利用直線與圓相切得到,再代入這一關系中,即可得答案;(2)利用導數求函數的最小值,即可得答案;【詳解】以為原點,直線為軸建立如圖所示的直角坐標系.設,則,,.因為,所以直線的方程為,即,因為圓與相切
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年華東師大版九年級歷史下冊月考試卷
- 2025年外研版必修1歷史上冊階段測試試卷含答案
- 2025年浙教新版高一語文上冊月考試卷
- 2025年外研版三年級起點選擇性必修1歷史下冊階段測試試卷含答案
- 2025年新科版九年級生物下冊階段測試試卷含答案
- 2025年人民版九年級歷史下冊月考試卷
- 2025年度拌合料行業(yè)市場分析與競爭情報服務合同2篇
- 技術合同范本(2篇)
- 承包水庫合同(2篇)
- 2025年度教育信息化項目派遣人員勞動合同2篇
- 《天潤乳業(yè)營運能力及風險管理問題及完善對策(7900字論文)》
- 醫(yī)院醫(yī)學倫理委員會章程
- xx單位政務云商用密碼應用方案V2.0
- 婦科腫瘤護理新進展Ppt
- 動土作業(yè)專項安全培訓考試試題(帶答案)
- 大學生就業(yè)指導(高職就業(yè)指導課程 )全套教學課件
- 死亡病例討論總結分析
- 第二章 會展的產生與發(fā)展
- 空域規(guī)劃與管理V2.0
- JGT266-2011 泡沫混凝土標準規(guī)范
- 商戶用電申請表
評論
0/150
提交評論