




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
Thesummerexperiment——theMolecularPartBio05陶欣2010030038Group8-2ClassBExperimentpartner:劉子源金雨2012/8/24-2012/8/28ObjectivesTheoverallobjectiveofthissummerall-aroundexperimentistoimproveourexperimentaloperationskillsandproblem-designingskills,tobuildupourgoodhabitsinworkingandstudy,tolearnhowtocooperatewithourpartners,andtoobtainacertainlevelofstandardwritingabilitythroughtheprocessoftheexpression,purificationandidentificationoftheHSP16.3protein.BackgroundandPrinciplesSmallheatshockprotein(sHSP)Inresponsetoenvironmentalstresses,cellsincreasetheexpressionofoneclassofimportantproteinscalledsmallheatshockproteins(sHSP),whichendowcellswiththermo-toleranceandarebelievedtobeinvolvedintheinhibitionofapoptosis,organizationofthecytoskeleton,establishingtherefractivepropertiesoftheeyslens,andstabilizationofRNA.ProteinsofsHSPfamilyhavevariousbiologicalfunctions,butallofthemsharetheATPindependentchaperoneactivity,preventingproteinaggregationinstress.Structurestudiesindicatethattheyusuallyfunctionbyassemblingintocertainoligo-structure.HSP16.3HSP16.3isanimportantsHSPfromMycobacteriumTuberculosi,itismarkedlyexpressedduringthestationaryphaseandbecomesamainproteininthecell.HSP16.3isanimmunodominantantigenandthemajormembraneproteinofM.tuberculosis.PreviousstudiesshowedthatHSP16.3canmakethecellstructurestableandpreventstationaryM.tuberculosisfromautolysing.GeneknockoutstudiesindicatethatHSP16.3isrequiredforM.tuberculosistogrowinmacrophages.HSP16.3consistsof144aminoacidsanditsmolecularweightis16277Da.Itisaα-crystallin-relatedsHSPwiththeconservedα-crystallindomaininitsC-terminalpart(D/N-G-V-L-T-T/V-X-V/A).ExperimentsinvitrorevealedthatHSP16.3cansuppressthethermalaggregationofcitratesynthaseat39.5?C,withoutconsumptionofATP.Itusuallyassemblesintoatriangulartrimer-of-trimerssturtureinvitro.pET-28aplasmidFigure.1thestructureofpET-28aplasmidIntroductionofPCRThepolymerasechainreaction(PCR)isatechniqueforamplifyingDNAsequencesinvitro.ThismethodtakesadvantageofthermallystableDNApolymeraseandcanproducenumerouscopies(about268,435,456)fromasingletemplateDNAmoleculethroughtensofrepeatedcyclesoftemplatedenaturation,primerannealing,andDNAsynthesis,butitisextremelysensitivetotracecontaminationofunwantedtemplateDNAinthereactionsolution.Thismethodisalsoimportantinbiotechnology,forensicidentification,medicine,andgeneticresearch.PCRwasinventedbyKaryMullisandhiscolleaguesin1985.ThediscoveryofTaqDNApolymerase,thermallystableenzymeisolatedbyChienetal.in1976,madethePCRautomationpossible.In1987,KaryMullisetal.accomplishedthePCRautomationsystemwhichmadePCRpractical.KaryMulliswasawardedthe1993NobelPrizeinChemistryforinventingPCR.PCRhasplayedamajorroleintheInternationalHumanGenomeProject,whichhasmajorhealthandantiagingimplications.Thetechniquehasalsobecomeinvaluableinbiotechnology,forensicidentification,medicine,diseasediagnosis,forensic-scienceanalysisinconvictingtheguiltyandfreeingthefalselyaccused,andthestudyofDNAfromancientorfossiltissues.TheprincipleissimilartoDNAdenaturationandrenaturationathightemperature(93-95℃),thetargetdouble-strandDNAcanbeseparatedintosingle-strandDNA.Atlowtemperature(37-65℃),twoartificialoligonucleotideswillannealedtothecomplementarysequenceinthetemplateformingpartialdoublestrand.At72℃,theTaqpolymerasesynthesizesnewstrandbyextendingtheprimersalongthedirectionfrom5’to3’.Thenumberofsequencesbetweentheprimersisdoubledafterthiscycle.ThecyclecanberepeatedasthenewlysynthesizedDNAstrandscanserveastemplatesinthenextcycle.So,theamountoftargetsequencedramaticallyincreases.Theamplificationcoefficientcanbeabove109theoreticallyafter25-30cyclesor106-107practically.GelelectrophoresisBymeltingandthenrefreezingagarose,itcanformakindofsolidbasewithtinyholes,whichiscalledagarosegel.DNAmoleculescanbeinjectedintoonesideofthegel.Then,whentheDNAmoleculesaresubjectedtoanelectricfieldwiththepresenceofappropriatebuffer,theDNAmoleculeswillmovetowardtheanodeindifferentvelocitiesaccordingtothedistinctivestructureandmolecularmassofDNA.(SeeFig.2)Figure.2GelElectrophoresisSeveralfactorsarecrucialindeterminingthemobilityshiftoftheDNAmolecules,suchasthesizeandstructureoftheDNA,themolecularmassoftheDNA,pressure,thebuffer,etc.CompetentcellsandtransformationNaturally,bacterialcellsarenoteasytoallowforeignDNAtopasstheircellwalls.However,whentheyaretreatedwithsomereagents,suchasCaCl2,theircellwallswillbealteredwhichmakestheforeignDNAenterthecellseasily.Suchcellsarecalled“competentcells”.TheprocessofintroducingforeignDNAintothecompetentcellsiscalled“transformation”.Thetransformationisafundamentaltechniqueingeneengineering.Throughthistechnique,theforeignDNAcanbereplicatedandexpressedinthecompetentcellswhichmakesthehostcellsgainnewgeneticphenotype.Thecompetentcellsusedinthetransformationaregenerallyrestriction/modification-deficientmutantswhichhavenorestrictionandmethylationenzymes.Threemajorpartoftheexperiment—molecularbiologypart,microbiologypart,andbiochemistrypart.Hereinthemolecularbiologypart,theHSP16.3gene(togetherwithaKanamycinresistancegene)isamplifiedbyPCRandclonedintotheplasmidpET-28a,andthenweusetherecombinantplasmidtotransformE.Coli.BL21strain.Materials,reagentsandequipmentsElectrophoresisMaterialsDNAsampleNEB1KbDNALadder(dilutedto50ng/μl)aragoseReagents:5×TAEbuffer10×loadingbufferEBEquipments:ElectrophoresisinstrumentElectrophoresistroughPipette&tipsMicrowaveovenUltraviolettransmissionInstrumentGelImagingSystemPCRMaterials:TemplateDNA(containingtheKanamycinresistancegene,dilutedbeforehand)Upstreamanddownstreamprimers(dilutedto25μMbeforehand)UpstreamprimerhspF:5'-CAGCCACCACCCTTCCCGTTCA-3'DownstreamprimerhspR:5'-CCGGTTGGTGGACCGGATCTGAA-3'Reagents:10×PCRBuffer(Mg2+plus)dNTPMixture(2.5mMeach)TaKaRaTaqPolymerase5U/μlEquipments:PipettesandtipsPCRtubesPCRmachinePurificationofthePCRproductsSmallscaleDNAfragmentpurificationKit(BioDevCorp):BindingbufferCon.WashsolutionAbsorbanceSpinColumnWasteLiquidCollectionTubeRestrictionenzymedigestionofPCRproductandthevectorMaterials:PCRproductpET-28avectorReagents:BamHI(15U/ul)XholI(10U/ul)EnzymedigestionbufferEquipents:WaterbathPipetteandtipsEPtubesIceboxPurificationofthedigestedPCRproductMaterials:EnzymedigestedPCRproductReagents:100%ethanol70%ethanoldistilledwater3MNaAcEquipents:RefrigeratorCentrifugeEPtubesPipetteandtipsPurificationofthedigestedvectorRecoveryfromGel-SmallScaleDNAFragmentPurificationKit(BioDev):GeldissolvingsolutionCon.WashSolutionTypeBAbsorbanceSpinColumn/WasteLiquidCollectionTubeLigationMaterials:DigestedandpurifiedPCRproductDigestedandpurifiedpET-28avector(Kanamycin,lacZ),5.3kbReagents:DNALigationKitVer2.1(TaKaRa)Equipents:IceboxCompetentE.colicellpreparationMaterials:E.coliBL21strainReagents:LBculturemedium(solidandliquid)AmpcontainingLBsolidculturemedium0.05mol/LCaCl20.05mol/LCaCl2containing15%glycerolEquipents:Pipette&tipsEPtubesShakerflaskIncubatorCentrifugeRefrigeratorWaterbathIceboxCleandeskSpetrophotometerTransformationMaterials:Competentcells:E.coliBL21strainRecombinantplasmidReagents:LBculturemedium(solidandliquid)KanamycinsolutionEquipents:ShakerflaskCentrifugeWaterbathIncubatorCleandeskIceboxPipette&tipsEPtubesSelectionplateSteriletoothpickIsolationoftheplasmidMaterials:TransformedandselectedE.colicellsReagentsandequipments:Smallscaleplasmidrapidextractionkit(BioDevCorp.)EnzymaticdigestionandelectrophoresistoidentifythepositiverecombinantplasmidMaterials:IsolatedplasmidfromthetransformedandselectedE.coliDH5αcellsNEB1KbDNALadder(dilutedto50ng/μl)aragoseReagents:10XBufferK,BamHI,XhoI(TaKaRaCorp.)5×TAEbuffer10×loadingbufferEBEquipents:ElectrophoresisinstrumentElectrophoresistroughPipette&tipsMicrowaveovenUltraviolettransmissionInstrumentGelImagingSystem=4\*ROMANIVProceduresPreparationoftargetHSP16.3DNAThe50μlPCRsystemisasfollows:Table.1PCRreactionsystemsetMateralorreagentVolumeandconcentrationddH2O37.5μl10×PCRBuffer(Mg2+plus)5μldNTPMixture4μlTemplateDNA2μlalUpstreamprimer0.5μlDownstreamprimer0.5μlTemplateDNA2μlTaKaRaTaqpolymerase0.5μlTotalvolume50μl-32cycles:95℃for5min,95℃denaturationfor40s,55℃annealingfor30s,72℃elongationfor40s.-Afterthelastcycle,72℃for7min,heatpreservationunder4℃.PurificationofthePCRproduct1)AdjustthevolumeofthePCRsampleto50μlwithwaterifnecessary.Add8volumesofBindingBufferto1volumeofthePCRsampleandmix.(Note:Forastandardpurification,add400ulofbindingbufferto50ulPCRsample)2)Placethespincolumninaprovided2mlcollectiontube.3)Applythesampletothecolumnandcentrifugeat12,000rpmfor30s.4)Discardflow-through.Placethecolumnbackintothesametube.(Note:Collectiontubesarere-usedtoreduceplasticwaste.)5)Add500μlWashingBuffertothecolumnandcentrifugeat12,000rpmfor30s.(Note:Add3volumeofethanol(100%)to1volumeofConcentratedWashingBufferbeforeuse.)6)Repeatstepaboveforonetime.7)Discardflow-throughandplacethecolumnbackinthesametube.Centrifugethecolumnforanadditional2min.(IMPORTANT:ResidualwashingBuffershouldbecompletelyremovedcarefullywithpipettetipifnecessary.)8) Placethecolumninaclean1.5mlmicrocentrifugetube.9)Add40mlH2Otothecenterofthecolumnmembrane,letthecolumnstandfor1min,andthencentrifugeat12,000rpmfor30s.10)Takeoutthemicrocentrifugetube.Reservetheflow-throughinatube. ElectrophoresisofthepurifiedPCRproduct.Inthisprocedure,thepurposeistoidentifywhetherthereisPCRproduct.Thegelisprepared.Mixthe3μlPCRproductwiththe2μlloadingbuffer.Andthenloadthebuffertothewell.Runthegelunder100V.Observetheresultoftheelectrophoresis.EnzymedigestionofthePCRproduct.The20μldoubledigestionsystemisdesignedasfollow.Table.2restrictionenzymedigestionofthepurifiedPCRproductMateralorreagentvolumePurifiedPCRproduct6lBamHI1lXholI1l10×Kbuffer2lddH2O10lTotalvolume20l-Waterbathat37℃for2hours.PurificationofthedigestedPCRproduct.Add50lethanolandNaAc(pH=5.2)tothedigestedPCRproduct,-20℃intherefrigeratorfor20min.4℃,12000rpm,centrifugatefor8min,discardthesupernatant.Add500l70%ethanoltowashtheprecipitate,12,000rpmcentrifugateatroomtemperaturefor3min.DrytheDNAprecipitateatroomtemperaturefor15minorso,add40μlH2OtoresolvethedigestedPCRproduct.2.PreparationofthepET-28aplasmidRestrictionenzymedigestionofthevectors.The50ldoubledigestion(BamHI/XholI)systemofthepET-28avectorisshownasfollows:Table.3restrictionenzymedigestionofpET-28aMaterialorreagentvolumepET-28avector20lBamHI2lXhoII3l10×Kbuffer5lddH2O20lTotalvolume50l-37℃waterbathfor5-6hrs.PurificationofthedigestedvectorRunthedigestedvectoronthegel,cutofftheband,keepingthegelsmallest.(tryyourbesttoremovetheemptygelwhichdoesn’tcontainthevector,ifyoukeeptoomuchemptygel,younotonlywastethegelliquid,butalsodecreasetherecoveryefficiencyofdigestedvector.)Addsolaccordingtotheprincipleof1:5ratioofgelandsol,meltingthegelat55℃-65℃,shakingtheEPoccasionally.Addthemeltedgelintospincolumn,centrifugeitat12000rpmfor30s,discardtheflow-through.Add500μlWashingBuffertothecolumnandcentrifugeat12,000rpmfor30s.Repeatthestepaboveforonetime.Discardflow-throughandplacethecolumnbackinthesametube.Centrifugethecolumnforanadditional2min.(IMPORTANT:ResidualwashingBuffershouldbecompletelyremovedcarefullywithpipettetipifnecessary.)PlacethecolumninacleanEPtube.Add10mlH2Otothecenterofthecolumnmembrane,letthecolumnstandfor1min,andthencentrifugeat12,000rpmfor2min.Reservetheflow-through.3.PreparationoftherecombinantplasmidsElectrophoresisofthevectorandthetargetfragmentPlace1μlloadingbufferand3μlthetargetDNAfragmentsolutiononapieceofsuperhydrophobicpaperinadropletandmixitupwithapippet.Addallthe4μlsolutionintoawellintheagarosegel,runthegelunder100V.Place2μlloadingbufferand3μlthedigestedvectorsolutiononapieceofsuperhydrophobicpaperinadropletandmixitupwithapipette.Addallthe4μlsolutionintoawellintheagarosegel,runthegelunder100V.Observetheresultoftheelectrophoresis.LinkageofthevectorandtargetfragmentMixthevectorandtargetDNAfragmenttomake7μlDNAsolution.(weusethevectorfromtheteacher,theamountis3μl,thusthefragmentis4μl)Add7μlSolutionItotheDNAsolution(ontheice)andmixup.Reactat160Cfor1hour.Addthissolutionto100mlE.coliDH5αcompetentcells.(onice.)4.TransformationandcultivationTransformationTake100mlE.coliDH5αcompetentcellsfrom-70fridge.Putontheiceboximmediatelyafterthawing.Addtherecombinedplasmidtothetube,mixitgentlyandputintheicefor30min.Heatshockbytransferringthetubestoawaterbathof42℃for90seconds.Immediatelyreturnthetubetotheicebath.Keeponicefor2~3minutes.Add0.5mlofLB(withnoantibioticsadded)intoeachtube.Incubatethetubesfor45minutesat37℃toallowthecellstoexpresstheirantibioticgeneproduct.Centrifugethetube2minat4000rpm.Discardthesupernatantuntilthere200μlleft.Mixitandspreadthe200μloftheresultingsolutionsonLBplates(withkanamycin).AftercompleteabsorptionofliquidLB,upsidedowntheplatesandincubatetheplatesat37℃overnight.CultivationPickthecolonywithaseptictoothpick;loadthecloneson3mlLBliquidculturemedium(kanamycin50μg/ml)at37℃on180rpmshakingtablefor12h~16h.5.IdentificationandretransformationIsolationofplasmidsLoad3mlmediumintoEppendorftube,10000r/mincentrifuge1min,giveupsupernatant,add100μlsolutionI(GET),blendfor3-5min.Add200μl0.2mol/LNaOH+1%SDS(solutionII),mixthesolutionfor6-7times,keepthetubeinicefor5min.Add150μlpotassiumacetate(solutionIII),mixthesolutionfor6-7times,keepthetubeinicefor5min.Subjectthetubetohigh-speedcentrifuge10000r/mincentrifugefor7min,putthesupernatantinanewtube,add1ml100%ethanol,12000r/mincentrifuge5min,giveupsupernatant.Washthesedimentationwith0.5ml70%ethanol,12000r/mincentrifuge5min,giveupsupernatant,putthemonbibulouspaper,desiccateinlab.Add50μlwater,keepfor1~2min,centrifugeat12000rpmfor1min.DigestionandidentificationTable.4digestionoftheplasmidMaterialorreagentvolume10XBufferK2μlBamHI1μlXhoI1μlPlasmid10μlddwater6μlTotalvolume20μl-WaterbathandtherunelectrophoresisgelTransformationoftherecombinantDNAtoBL21Take100mlE.coliBL21competentcellsfrom-70fridge.Putontheiceboximmediatelyafterthawing.Addtherecombinedplasmidtothetube,mixitgentlyandputintheicefor30min.Heatshockbytransferringthetubestoawaterbathof42℃for90seconds.Immediatelyreturnthetubetotheicebath.Keeponicefor2~3minutes.Add1μlofLB(withnoantibioticsadded)intoeachtube.Incubatethetubesfor45minutesat37℃toallowthecellstoexpresstheirantibioticgeneproduct.spreadthe200μloftheresultingsolutionsonLBplates(withkanamycin).AftercompleteabsorptionofliquidLB,upsidedowntheplatesandincubatetheplatesat37℃overnight.PreservethepositivecloneTakeacloneofE.Coli.BL21to500μlLBmediumcontaining50μg/mlkanamycin.Incubatetheculture4~5hoursat37degree.Add500μlglyceroltothetube,storeat-20℃.ResultsanddiscussionElectrophoresisofthePCRproduct(afterpurification)ResultBeforethepurificationofthePCRproduct,werunanelectrophoresisofthePCRproductandgettheresultasfollowsinFig.3.12345678910111213141516171234567891011121314151617Figure.3theelectrophoresisresultofPCRproductandthestandardmarker(lane16)Oursampleisaddedinlane8,therightgel.DiscussionAswehaveknownfromreference,thePCRproductofHSP16.3geneisabout430bplong.Butmostofthesampleinourclassisaround500bp.Wecancalculatedthatoursampleisabout500bpreferringtotheNEBDNAladder.ButwecanstillconsiderthatwegettherightPCRsegmentaswehaveexpected.However,thebandinthelargegelisnotasbrightasthelittle’s.Andthepossiblereasonscomefromtwoaspectsbelow:Somemistakesaremadeinthestainingstepsothatthebandsareallnotsobright.InthestepofpurifyingPCRproduct,wemaynotremovethewashingsolutionclearlysothatsomeethanolremaininthevessel,resultinginthelowrecoveryefficiency.ElectrophoresisofthedigestedvectorandtargetfragmentResultwehavetocomparethebrightnessofthevectorwiththatoftheDNAfragmenttodeterminethevolumeofthetwosamplesintheligationstep.Besides,weaisohavetoexaminewhetherthevectorisfullycutbyenzymeandcondensethedigestedvector.Werunanelectrophoresisofthedigestedvectorandgettheresultasfollows.910111213141516191011121314151612345678Figure.4TheelectrophoresisresultofdigestedvectorandthestandardmarkerLane6isthestandardmarkerandLane4ismygroup’svector.DiscussionOurvectorisonlane4andDNAfragmentonlane7.Butwecan’tseeanythinginlane4andlane7.Thepossiblereasonsmaybethatthedigestiontimeisnotenoughandthefragmentsarenotenoughtosee.Sowehavetouseothergroup’ssampleswiththeirvectoronlane6andDNAfragmentonlane3.Aswehaveknownfromreference,thelengthofthevectorisabout5.3KbandtheDNAfragmentisabout430bp.WeconsiderthattheDNAfragmentis4timesbrighterthanthevector.Thus,tomakesuretheDNAfragment:thevectorisfrom10:1to3:1,weadd1μlDNAfragmentand6μlvector.Thecalculationproceduresareasfollow:V1+V2=7V1/V2=5300/(3*430N)(Nisthebrightnessratio,V1representsvolumeofvector,V2representsvolumeoftargetDNAfragment)CultivationofthebacteriaAfterovernightcultivation,wegetmanycoloniesinthecultureplateandwedidn’tseeanyother
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 四年級數(shù)學(xué)上冊五倍數(shù)和因數(shù)5.4.1認(rèn)識因數(shù)質(zhì)數(shù)合數(shù)教學(xué)設(shè)計冀教版
- 建設(shè)芳香腈新材料及氯氰基苯技改轉(zhuǎn)型升級項目可行性研究報告模板-立項備案
- 自動拉模壓瓦機(jī)企業(yè)ESG實踐與創(chuàng)新戰(zhàn)略研究報告
- 中型車企業(yè)ESG實踐與創(chuàng)新戰(zhàn)略研究報告
- 內(nèi)燃機(jī)及配件企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級戰(zhàn)略研究報告
- 碳納米管企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級戰(zhàn)略研究報告
- 空調(diào)、冰箱驅(qū)動控制器企業(yè)ESG實踐與創(chuàng)新戰(zhàn)略研究報告
- 電力銅母線企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級戰(zhàn)略研究報告
- 透明質(zhì)酸(玻尿酸)企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級戰(zhàn)略研究報告
- 2025年涂鍍添加劑合作協(xié)議書
- 基于多源異構(gòu)數(shù)據(jù)的地質(zhì)知識圖譜構(gòu)建與應(yīng)用
- 2024年戰(zhàn)略規(guī)劃咨詢服務(wù)合同
- 2024年領(lǐng)導(dǎo)干部任前廉政知識考試測試題庫及答案
- 《公共資源交易主體信用評價實施指南》編制說明
- 2024年度山東省國家電網(wǎng)招聘之管理類測試卷(含答案)
- 煤礦防突專項設(shè)計(樣本)
- 紹興銀行社會招聘真題
- 《儲水式電熱水器的安全使用年限》
- DB1303T375-2024起重機(jī)械使用管理制度編制指南
- 路燈安裝工程項目實施重點、難點和解決方案
- 山西省云時代技術(shù)有限公司筆試題庫
評論
0/150
提交評論