版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第初中數(shù)學(xué)常用公式大全15篇
初中數(shù)學(xué)常用公式大全15篇(優(yōu))
初中數(shù)學(xué)常用公式大全1
平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似
三角形相似定理
1相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)
2直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
3判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)
4判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)
5定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似
6性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比
7性質(zhì)定理2相似三角形周長的比等于相似比
三角形相似定理考點(diǎn)歸納:相似三角形面積的比等于相似比的平方。
正方形定理公式
正方形的特征:
①正方形的四邊相等;
②正方形的四個角都是直角;
③正方形的兩條對角線相等,且互相垂直平分,每一條對角線平分一組對角;
正方形的判定:
①有一個角是直角的菱形是正方形;
②有一組鄰邊相等的矩形是正方形。
希望上面對正方形定理公式知識的講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會取得很好的成績的哦。
平行四邊形
平行四邊形的性質(zhì):
①平行四邊形的對邊相等;
②平行四邊形的對角相等;
③平行四邊形的對角線互相平分;
平行四邊形的判定:
①兩組對角分別相等的四邊形是平行四邊形;
②兩組對邊分別相等的四邊形是平行四邊形;
③對角線互相平分的四邊形是平行四邊形;
④一組對邊平行且相等的四邊形是平行四邊形。
直角三角形的'性質(zhì):
①直角三角形的兩個銳角互為余角;
②直角三角形斜邊上的中線等于斜邊的一半;
③直角三角形的兩直角邊的平方和等于斜邊的平方(勾股定理);
④直角三角形中30度
角所對的直角邊等于斜邊的一半;
直角三角形的判定:
①有兩個角互余的三角形是直角三角形;
②如果三角形的三邊長a、b、c有下面關(guān)系a^2+b^2=c^2,那么這個三角形是直角三角形(勾股定理的逆定理)。
等腰三角形的性質(zhì):
①等腰三角形的兩個底角相等;
②等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合(三線合一)
三角形
三角形的三邊關(guān)系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊;
三角形的內(nèi)角和定理:三角形的三個內(nèi)角的和等于180度;
三角形的外角和定理:三角形的一個外角等于和它不相鄰的兩個的和;
三角形的外角和定理推理:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;
三角形的三條角平分線交于一點(diǎn)(內(nèi)心);
三角形的三邊的垂直平分線交于一點(diǎn)(外心);
三角形中位線定理:三角形兩邊中點(diǎn)的連線平行于第三邊,并且等于第三邊的一半;
初中數(shù)學(xué)常用公式大全2
1正方形
C周長S面積a邊長
周長=邊長_4
C=4a
面積=邊長_邊長
S=a_a
2正方體
V:體積a:棱長
表面積=棱長_棱長_6
S表=a_a_6
體積=棱長_棱長_棱長
V=a_a_a
3長方形
C周長S面積a邊長
周長=(長+寬)_2
C=2(a+b)
面積=長_寬
S=ab
4長方體
V:體積s:面積a:長b:寬h:高
(1)表面積(長_寬+長_高+寬_高)_2
S=2(ab+ah+bh)
(2)體積=長_寬_高
V=abh
5三角形
s面積a底h高
面積=底_高÷2
s=ah÷2
三角形高=面積_2÷底
三角形底=面積_2÷高
6平行四邊形
s面積a底h高
面積=底_高
s=ah
7梯形
s面積a上底b下底h高
面積=(上底+下底)_高÷2
s=(a+b)_h÷2
8圓形
S面積C周長∏d=直徑r=半徑
(1)周長=直徑_∏=2_∏_半徑
C=∏d=2∏r
(2)面積=半徑_半徑_∏
9圓柱體
v:體積h:高s;底面積r:底面半徑c:底面周長
(1)側(cè)面積=底面周長_高
(2)表面積=側(cè)面積+底面積_2
(3)體積=底面積_高
(4)體積=側(cè)面積÷2_半徑
10圓錐體
v:體積h:高s;底面積r:底面半徑
體積=底面積_高÷3
總數(shù)÷總份數(shù)=平均數(shù)
和差問題的公式
(和+差)÷2=大數(shù)
(和-差)÷2=小數(shù)
和倍問題
和÷(倍數(shù)-1)=小數(shù)
小數(shù)_倍數(shù)=大數(shù)
(或者和-小數(shù)=大數(shù))
差倍問題
差÷(倍數(shù)-1)=小數(shù)
小數(shù)_倍數(shù)=大數(shù)
(或小數(shù)+差=大數(shù))
初中數(shù)學(xué)常用公式大全3
最簡根式的條件:
最簡根式三條件,
號內(nèi)不把分母含,
冪指(數(shù))根指(數(shù))要互質(zhì),
冪指比根指小一點(diǎn)。
特殊點(diǎn)的坐標(biāo)特征:
坐標(biāo)平面點(diǎn)(_,y),橫在前來縱在后;
(+,+),(-,+),(-,-)和(+,-),四個象限分前后;
_軸上y為0,_為0在y軸。
象限角的平分線:
象限角的平分線,
坐標(biāo)特征有特點(diǎn),
一、三橫縱都相等,
二、四橫縱確相反。
平行某軸的直線:
平行某軸的直線,
點(diǎn)的坐標(biāo)有講究,
直線平行_軸,縱坐標(biāo)相等橫不同;
直線平行于y軸,點(diǎn)的橫坐標(biāo)仍照舊。
對稱點(diǎn)的坐標(biāo):
對稱點(diǎn)坐標(biāo)要記牢,
相反數(shù)位置莫混淆,
_軸對稱y相反,
y軸對稱,_前面添負(fù)號;
原點(diǎn)對稱最好記,
橫縱坐標(biāo)變符號。
自變量的取值范圍:
分式分母不為零,
偶次根下負(fù)不行;
零次冪底數(shù)不為零,
整式、奇次根全能行。
函數(shù)圖象的移動規(guī)律:若把一次函數(shù)解析式寫成y=k(_+0)+b,二次函數(shù)的解析式寫成y=a(_+h)2+k的形式,則可用下面的口訣
左右平移在括號,
上下平移在末稍,
左正右負(fù)須牢記,
上正下負(fù)錯不了。
一次函數(shù)的`圖象與性質(zhì)的口訣:
一次函數(shù)是直線,圖象經(jīng)過三象限;
正比例函數(shù)更簡單,經(jīng)過原點(diǎn)一直線;
兩個系數(shù)k與b,作用之大莫小看,
k是斜率定夾角,b與y軸來相見,
k為正來右上斜,_增減y增減;
k為負(fù)來左下展,變化規(guī)律正相反;
k的絕對值越大,線離橫軸就越遠(yuǎn)。
二次函數(shù)的圖象與性質(zhì)的口訣:
二次函數(shù)拋物線,圖象對稱是關(guān)鍵;
開口、頂點(diǎn)和交點(diǎn),它們確定圖象現(xiàn);
開口、大小由a斷,c與y軸來相見,
b的符號較特別,符號與a相關(guān)聯(lián);
頂點(diǎn)位置先找見,y軸作為參考線,
左同右異中為0,牢記心中莫混亂;
頂點(diǎn)坐標(biāo)最重要,一般式配方它就現(xiàn),
橫標(biāo)即為對稱軸,縱標(biāo)函數(shù)最值見。
若求對稱軸位置,符號反,
一般、頂點(diǎn)、交點(diǎn)式,不同表達(dá)能互換。
反比例函數(shù)的圖象與性質(zhì)的口訣:
反比例函數(shù)有特點(diǎn),雙曲線相背離得遠(yuǎn);
k為正,圖在一、三(象)限,
k為負(fù),圖在二、四(象)限;
圖在一、三函數(shù)減,兩個分支分別減。
圖在二、四正相反,兩個分支分別增;
線越長越近軸,永遠(yuǎn)與軸不沾邊。
巧記三角函數(shù)定義:初中所學(xué)的三角函數(shù)有正弦、余弦、正切、余切,它們實(shí)際是直角三角形的邊的比值,可以把兩個字用/隔開,再用下面的.
一句話記定義:
一位不高明的廚子教徒弟殺魚,說了這么一句話:“正對魚磷(余鄰)直刀切。
”正:正弦或正切,對:對邊即正是對;余:余弦或余弦,鄰:鄰邊即余是鄰;切是直角邊.
三角函數(shù)的增減性:正增余減
特殊三角函數(shù)值記憶:
首先記住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子記口訣“123,321,三九二十七”既可。
平行四邊形的判定:
要證平行四邊形,兩個條件才能行
,一證對邊都相等,或證對邊都平行,
一組對邊也可以,必須相等且平行。
對角線,是個寶,互相平分“跑不了”,
對角相等也有用,“兩組對角”才能成。
梯形問題的輔助線:
移動梯形對角線,兩腰之和成一線;
平行移動一條腰,兩腰同在“△”現(xiàn);
延長兩腰交一點(diǎn),“△”中有平行線;
作出梯形兩高線,矩形顯示在眼前;
已知腰上一中線,莫忘作出中位線。
添加輔助線歌:
輔助線,怎么添?
找出規(guī)律是關(guān)鍵,題中若有角(平)分線,可向兩邊作垂線;
線段垂直平分線,引向兩端把線連,三角形兩邊中點(diǎn),連接則成中位線;
三角形中有中線,延長中線翻一番。
圓的證明歌:
圓的證明不算難,常把半徑直徑連;
有弦可作弦心距,它定垂直平分弦;
直徑是圓最大弦,直圓周角立上邊,
它若垂直平分弦,垂徑、射影響耳邊;
還有與圓有關(guān)角,勿忘相互有關(guān)聯(lián),
圓周、圓心、弦切角,細(xì)找關(guān)系把線連;
同弧圓周角相等,證題用它最多見,
圓中若有弦切角,夾弧找到就好辦;
圓有內(nèi)接四邊形,對角互補(bǔ)記心間,
外角等于內(nèi)對角,四邊形定內(nèi)接圓;
直角相對或共弦,試試加個輔助圓;
若是證題打轉(zhuǎn)轉(zhuǎn),四點(diǎn)共圓可解難;
要想證明圓切線,垂直半徑過外端,
直線與圓有共點(diǎn),證垂直來半徑連,
直線與圓未給點(diǎn),需證半徑作垂線;
四邊形有內(nèi)切圓,對邊和等是條件;
如果遇到圓與圓,弄清位置很關(guān)鍵,
兩圓相切作公切,兩圓相交連公弦。
圓中比例線段:
遇等積,改等比,橫找豎找定相似;
不相似,別生氣,等線等比來代替,
遇等比,改等積,引用射影和圓冪,
平行線,轉(zhuǎn)比例,兩端各自找聯(lián)系。
正多邊形訣竅歌:
份相等分割圓,n值必須大于三,
依次連接各分點(diǎn),內(nèi)接正n邊形在眼前。
經(jīng)過分點(diǎn)做切線,切線相交n個點(diǎn)。
n個交點(diǎn)做頂點(diǎn),外切正n邊形便出現(xiàn)。
正n邊形很美觀,它有內(nèi)接、外切圓,
內(nèi)接、外切都唯一,兩圓還是同心圓,
它的圖形軸對稱,n條對稱軸都過圓心點(diǎn),
如果n值為偶數(shù),中心對稱很方便。
正n邊形做計(jì)算,邊心距、半徑是關(guān)鍵,
內(nèi)切、外接圓半徑,邊心距、半徑分別換,
分成直角三角形2n個整,依此計(jì)算便簡單。
函數(shù)學(xué)習(xí)口決:
正比例函數(shù)是直線,圖象一定過原點(diǎn),
k的正負(fù)是關(guān)鍵,決定直線的象限,
負(fù)k經(jīng)過二四限,_增大y在減,
上下平移k不變,由引得到一次線,
向上加b向下減,圖象經(jīng)過三個限,
兩點(diǎn)決定一條線,選定系數(shù)是關(guān)鍵。
反比例函數(shù)雙曲線,待定只需一個點(diǎn),
正k落在一三限,_增大y在減,
圖象上面任意點(diǎn),矩形面積都不變,
對稱軸是角分線,_、y的順序可交換。
二次函數(shù)拋物線,選定需要三個點(diǎn),
a的正負(fù)開口判,c的大小y軸看,
△的符號最簡便,_軸上數(shù)交點(diǎn),
a、b同號軸左邊,拋物線平移a不變,
頂點(diǎn)牽著圖象轉(zhuǎn),三種形式可變換,
配方法作用最關(guān)鍵。
初中數(shù)學(xué)常用公式大全4
常用數(shù)學(xué)公式
乘法與因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根與系數(shù)的關(guān)系_1+_2=-b/a_1__2=c/a注:韋達(dá)定理
判別式b2-4ac=0注:方程有兩個相等的實(shí)根
b2-4ac>0注:方程有兩個不等的實(shí)根
b2-4ac
看過初中數(shù)學(xué)公式表之常用數(shù)學(xué)公式,相信同學(xué)們都熟知乘法與因式分解、三角不等式、一元二次方程的解、根與系數(shù)的關(guān)系等公式內(nèi)容了吧。接下來還有更多的初中數(shù)學(xué)訊息盡在哦。
初中數(shù)學(xué)正方形定理公式
關(guān)于正方形定理公式的內(nèi)容精講知識,希望同學(xué)們很好的掌握下面的內(nèi)容。
正方形定理公式
正方形的特征:
①正方形的四邊相等;
②正方形的四個角都是直角;
③正方形的兩條對角線相等,且互相垂直平分,每一條對角線平分一組對角;
正方形的判定:
①有一個角是直角的菱形是正方形;
②有一組鄰邊相等的矩形是正方形。
希望上面對正方形定理公式知識的講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會取得很好的成績的哦。
初中數(shù)學(xué)平行四邊形定理公式
同學(xué)們認(rèn)真學(xué)習(xí),下面是老師對數(shù)學(xué)中平行四邊形定理公式的內(nèi)容講解。
平行四邊形
平行四邊形的性質(zhì):
①平行四邊形的對邊相等;
②平行四邊形的對角相等;
③平行四邊形的對角線互相平分;
平行四邊形的判定:
①兩組對角分別相等的四邊形是平行四邊形;
②兩組對邊分別相等的四邊形是平行四邊形;
③對角線互相平分的四邊形是平行四邊形;
④一組對邊平行且相等的四邊形是平行四邊形。
上面對數(shù)學(xué)中平行四邊形定理公式知識的講解學(xué)習(xí),同學(xué)們都能很好的掌握了吧,相信同學(xué)們會從中學(xué)習(xí)的更好的哦。
初中數(shù)學(xué)直角三角形定理公式
下面是對直角三角形定理公式的內(nèi)容講解,希望給同學(xué)們的學(xué)習(xí)很好的幫助。
直角三角形的性質(zhì):
①直角三角形的兩個銳角互為余角;
②直角三角形斜邊上的中線等于斜邊的'一半;
③直角三角形的兩直角邊的平方和等于斜邊的平方(勾股定理);
④直角三角形中30度
角所對的直角邊等于斜邊的一半;
直角三角形的判定:
①有兩個角互余的三角形是直角三角形;
②如果三角形的三邊長a、b、c有下面關(guān)系a^2+b^2=c^2
,那么這個三角形是直角三角形(勾股定理的逆定理)。
以上對數(shù)學(xué)直角三角形定理公式的內(nèi)容講解學(xué)習(xí),同學(xué)們都能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)等腰三角形的性質(zhì)定理公式
下面是對等腰三角形的性質(zhì)定理公式的內(nèi)容學(xué)習(xí),希望同學(xué)們認(rèn)真看看。
等腰三角形的性質(zhì):
①等腰三角形的兩個底角相等;
②等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合(三線合一)
上面對等腰三角形的性質(zhì)定理公式的內(nèi)容講解學(xué)習(xí),同學(xué)們都能很好的掌握了吧,希望同學(xué)們在考試中取得很好的成績。
初中數(shù)學(xué)三角形定理公式
對于三角形定理公式的學(xué)習(xí),我們做下面的內(nèi)容講解學(xué)習(xí)哦。
三角形
三角形的三邊關(guān)系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊;
三角形的內(nèi)角和定理:三角形的三個內(nèi)角的和等于180度;
三角形的外角和定理:三角形的一個外角等于和它不相鄰的兩個的和;
三角形的外角和定理推理:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;
三角形的三條角平分線交于一點(diǎn)(內(nèi)心);
三角形的三邊的垂直平分線交于一點(diǎn)(外心);
三角形中位線定理:三角形兩邊中點(diǎn)的連線平行于第三邊,并且等于第三邊的一半;
以上對三角形定理公式的內(nèi)容講解學(xué)習(xí),希望同學(xué)們都能很好的掌握,并在考試中取得很好的成績哦。
初中數(shù)學(xué)常用公式大全5
1、每份數(shù)_份數(shù)=總數(shù)總數(shù)÷每份數(shù)=份數(shù)總數(shù)÷份數(shù)=每份數(shù)
2、1倍數(shù)_倍數(shù)=幾倍數(shù)幾倍數(shù)÷1倍數(shù)=倍數(shù)幾倍數(shù)÷倍數(shù)=1倍數(shù)
3、速度_時(shí)間=路程路程÷速度=時(shí)間路程÷時(shí)間=速度
4、單價(jià)_數(shù)量=總價(jià)總價(jià)÷單價(jià)=數(shù)量總價(jià)÷數(shù)量=單價(jià)
5、工作效率_工作時(shí)間=工作總量工作總量÷工作效率=工作時(shí)間工作總量÷工作時(shí)間=工作效率
6、加數(shù)+加數(shù)=和和-一個加數(shù)=另一個加數(shù)7、被減數(shù)-減數(shù)=差被減數(shù)-差=減數(shù)差+減數(shù)=被減數(shù)
8、因數(shù)_因數(shù)=積積÷一個因數(shù)=另一個因數(shù)9、被除數(shù)÷除數(shù)=商被除數(shù)÷商=除數(shù)商_除數(shù)=被除數(shù)小學(xué)數(shù)學(xué)圖形計(jì)算公式
1、正方形C周長S面積a邊長周長=邊長_4C=4a面積=邊長_邊長S=a_a
2、正方體V:體積a:棱長表面積=棱長_棱長_6S表=a_a_6體積=棱長_棱長_棱長V=a_a_a
3、長方形C周長S面積a邊長周長=(長+寬)_2C=2(a+b)面積=長_寬S=ab
4、長方體V:體積s:面積a:長b:寬h:高(1)表面積(長_寬+長_高+寬_高)_2S=2(ab+ah+bh)(2)體積=長_寬_高V=abh
5三角形s面積a底h高面積=底_高÷2s=ah÷2三角形高=面積_2÷底三角形底=面積_2÷高
6平行四邊形s面積a底h高面積=底_高s=ah
7梯形s面積a上底b下底h高面積=(上底+下底)_高÷2s=(a+b)_h÷2
8圓形S面積C周長∏d=直徑r=半徑(1)周長=直徑_∏=2_∏_半徑C=∏d=2∏r(2)面積=半徑_半徑_∏
9圓柱體v:體積h:高s;底面積r:底面半徑c:底面周長
(1)側(cè)面積=底面周長_高
(2)表面積=側(cè)面積+底面積_2
(3)體積=底面積_高
(4)體積=側(cè)面積÷2_半徑
初中數(shù)學(xué)常用公式大全6
梯形中位線定理
梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L_h
(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d
(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
平行線分線段成比例定理三條平行線截兩條直線,所得的對應(yīng)線段成比例
推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例
定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊
平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的'三角形的三邊與原三角形三邊對應(yīng)成比例
看過梯形中位線定理,聰明的同學(xué)都知道梯形的中位線平行于兩底,并且等于兩底和的一半了吧。
初中數(shù)學(xué)常用公式大全7
1三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半
2梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)2S=Lh
3(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
4(2)合比性質(zhì)如果a/b=c/d,那么(ab)/b=(cd)/d
5(3)等比性質(zhì)如果a/b=c/d==m/n(b+d++n0),那么(a+c++m)/(b+d++n)=a/b
6平行線分線段成比例定理三條平行線截兩條直線,所得的對應(yīng)線段成比例
7推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例
8定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊
9平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例
10定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似
11相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)
12直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
13判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)
14判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)
15定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似
16性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比
17性質(zhì)定理2相似三角形周長的比等于相似比
18性質(zhì)定理3相似三角形面積的比等于相似比的平方
19任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值
20任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
21圓是定點(diǎn)的距離等于定長的點(diǎn)的集合
22圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
23圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
24同圓或等圓的半徑相等
25到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓
26和已知線段兩個端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線
27到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個角的平分線
28到兩條平行線距離相等的點(diǎn)的`軌跡,是和這兩條平行線平行且距離相等的一條直線
29定理不在同一直線上的三點(diǎn)確定一個圓。
30垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
31推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條?、谙业拇怪逼椒志€經(jīng)過圓心,并且平分弦所對的兩條?、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
32推論2圓的兩條平行弦所夾的弧相等
33圓是以圓心為對稱中心的中心對稱圖形
34定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
35推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等
36定理一條弧所對的圓周角等于它所對的圓心角的一半
37推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
38推論2半圓(或直徑)所對的圓周角是直角;90的圓周角所對的弦是直徑
39推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形
40定理圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角
初中數(shù)學(xué)常用公式大全8
1、同旁內(nèi)角互補(bǔ),兩直線平行
2、兩直線平行,同位角相等
3、兩直線平行,內(nèi)錯角相等
4、兩直線平行,同旁內(nèi)角互補(bǔ)
5、定理三角形兩邊的和大于第三邊
6、推論三角形兩邊的差小于第三邊
7、三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180°
8、推論1直角三角形的兩個銳角互余
9、推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和
10、推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角
11、全等三角形的對應(yīng)邊、對應(yīng)角相等
12、邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等
13、角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等
14、推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等
15、邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個三角形全等
16、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等
17、定理1在角的平分線上的點(diǎn)到這個角的兩邊的距離相等
18、定理2到一個角的兩邊的距離相同的點(diǎn),在這個角的平分線上
19、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
20、等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)
21、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
22、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
23、推論3等邊三角形的各角都相等,并且每一個角都等于60°
24、等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
25、推論1三個角都相等的三角形是等邊三角形
26、推論2有一個角等于60°的等腰三角形是等邊三角形
27、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
28、直角三角形斜邊上的中線等于斜邊上的一半
29、定理線段垂直平分線上的點(diǎn)和這條線段兩個端點(diǎn)的距離相等
30、逆定理和一條線段兩個端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
31、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合
32、定理1關(guān)于某條直線對稱的兩個圖形是全等形
33、定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線
34、定理3兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上
35、逆定理如果兩個圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱
36、勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2
37、勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2,那么這個三角形是直角三角形
38、定理四邊形的內(nèi)角和等于360°
39、四邊形的外角和等于360°
40、多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)_180°
41、推論任意多邊的外角和等于360°
42、平行四邊形性質(zhì)定理1平行四邊形的對角相等
43、平行四邊形性質(zhì)定理2平行四邊形的對邊相等
44、推論夾在兩條平行線間的平行線段相等
45、平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分
46、平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形
47、平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形
48、平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形
49、平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形
50、圓是定點(diǎn)的距離等于定長的點(diǎn)的集合
51、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
52、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
53、同圓或等圓的半徑相等
54、到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓
55、和已知線段兩個端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線
56、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個角的平分線
57、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線
58、定理不在同一直線上的三點(diǎn)確定一個圓。
59、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
60推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
61、推論2圓的兩條平行弦所夾的弧相等
62、3圓是以圓心為對稱中心的中心對稱圖形
63、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
64、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等
65、定理一條弧所對的圓周角等于它所對的'圓心角的一半
66、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
67、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
68、推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形
69、定理圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角
70、①直線L和⊙O相交d
②直線L和⊙O相切d=r
③直線L和⊙O相離d>r
71、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
72、切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑
73、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)
74、推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心
75、切線長定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角
76、圓的外切四邊形的兩組對邊的和相等
77、弦切角定理弦切角等于它所夾的弧對的圓周角
78、推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等
79、相交弦定理圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積相等
80、推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)
81、切割線定理從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長的比例中項(xiàng)
82、推論從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長的積相等
83、如果兩個圓相切,那么切點(diǎn)一定在連心線上
84、定理相交兩圓的連心線垂直平分兩圓的公共弦
85、定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓
初中數(shù)學(xué)常用公式大全9
1、平方與平方根
2、面積與平方
(1)任意兩個正數(shù)的和的平方,等于這兩個數(shù)的平方和
(2)任意兩個正數(shù)的差的平方,等于這兩個數(shù)的平方和,再減去這兩個數(shù)乘積的2倍
任意兩個有理數(shù)的和(或差)的平方,等于這兩個數(shù)的平方和,再加上(或減去)這兩個數(shù)乘積的2倍
3、平方根
1正數(shù)有兩個平方根,這兩個平方根互為相反數(shù);
2零只有一個平方根,它就是零本身;
3負(fù)數(shù)沒有平方根
4、實(shí)數(shù)
無限不循環(huán)小數(shù)叫做無理數(shù)
有理數(shù)和無理數(shù)統(tǒng)稱為實(shí)數(shù)
5、平方根的運(yùn)算
6、算術(shù)平方根的性質(zhì)
性質(zhì)1一個非負(fù)數(shù)的算術(shù)平方根的平方等于這個數(shù)本身
性質(zhì)2一個數(shù)的平方的算術(shù)平方根等于這個數(shù)的絕對值
7、算術(shù)平方根的乘、除運(yùn)算
1)算術(shù)平方根的乘法
sqrt(a)sqrt(b)=sqrt(ab)(a=0)
2算)術(shù)平方根的除法
sqrt(a)/sqrt(b)=sqrt(a/b)(a0)
通過分子、分母同乘以一個式子把分母中的根號化去火把根號中的分母化去,叫做分母有理化
3)被開方數(shù)的每個因數(shù)的指數(shù)都小于2;(2)被開方數(shù)不含有字母我們把符合這兩個條件的平方根叫做最簡平方根
8算術(shù)平方根的加、減運(yùn)算
如果幾個平方根化成最簡平方根以后,被開方數(shù)相同,那么這幾個平方根就叫做同類平方根
9、一元二次方程及其解法
1)一元二次方程
只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是2的方程,叫做一元二次方程
2)特殊的一元二次方程的解法
3)一般的一元二次方程的解法配方法
用配方法解一元二次方程的`一般步驟是:
1、化二次項(xiàng)系數(shù)為1用二次項(xiàng)系數(shù)去除方程兩邊,將方程化為_^2+p_+q=0的形式
2、移項(xiàng)把常數(shù)項(xiàng)移至方程右邊,將方程化為_^2+p_=-q的形式
3、配方方程兩邊同時(shí)加上“一次項(xiàng)系數(shù)一半的平方”,是方程左邊成為含有未知數(shù)的完全平方形式,右邊是一個常數(shù)
4、有平方根的定義,可知
(1)當(dāng)p^2/4-q0時(shí),原方程有兩個實(shí)數(shù)根;
(2)當(dāng)p^2/4-q=0,原方程有兩個相等的實(shí)數(shù)根(二重根);
(3)當(dāng)p^2/4-q0,原方程無實(shí)根
10、一元二次方程的求根公式
一元二次方程a_^2+b_+c=0(a!=0)的求根公式:
當(dāng)b^2-4ac=0時(shí),_1,2=(-b(+,-)sqrt(b^2-4ac))/2a
11、一元二次方程根的判別式
方程a_^2+b_+c=0(a!=0)
當(dāng)delta=b^2-4ac0時(shí),有兩個不相等的實(shí)數(shù)根;
當(dāng)delta=b^2-4ac=0時(shí),有兩個相等的實(shí)數(shù)根;
當(dāng)delta=b^2-4ac時(shí),沒有實(shí)數(shù)根
12、一元二次方程的根與系數(shù)的關(guān)系
以兩個數(shù)_1,_2為根的一元二次方程(二次項(xiàng)系數(shù)為1)是_^2-(_1+_2)_+_1_2=0
初中數(shù)學(xué)常用公式大全10
1過兩點(diǎn)有且只有一條直線
2兩點(diǎn)之間線段最短
3同角或等角的補(bǔ)角相等
4同角或等角的余角相等
5過一點(diǎn)有且只有一條直線和已知直線垂直
6直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
7平行公理經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行
8如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9同位角相等,兩直線平行
10內(nèi)錯角相等,兩直線平行
11同旁內(nèi)角互補(bǔ),兩直線平行
12兩直線平行,同位角相等
13兩直線平行,內(nèi)錯角相等
14兩直線平行,同旁內(nèi)角互補(bǔ)
15定理三角形兩邊的和大于第三邊
16推論三角形兩邊的差小于第三邊
17三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180
18推論1直角三角形的兩個銳角互余
19推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和
20推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角
21全等三角形的對應(yīng)邊、對應(yīng)角相等
22邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等
23角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等
24推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等
25邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個三角形全等
26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等
27定理1在角的平分線上的點(diǎn)到這個角的兩邊的距離相等
28定理2到一個角的兩邊的距離相同的點(diǎn),在這個角的平分線上
29角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
30等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)
31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33推論3等邊三角形的各角都相等,并且每一個角都等于60
34等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35推論1三個角都相等的三角形是等邊三角形
36推論2有一個角等于60的等腰三角形是等邊三角形
37在直角三角形中,如果一個銳角等于30那么它所對的直角邊等于斜邊的一半
38直角三角形斜邊上的中線等于斜邊上的一半
39定理線段垂直平分線上的點(diǎn)和這條線段兩個端點(diǎn)的距離相等
40逆定理和一條線段兩個端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
41線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42定理1關(guān)于某條直線對稱的兩個圖形是全等形
43定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線
44定理3兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上
45逆定理如果兩個圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱
46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2,那么這個三角形是直角三角形
48定理四邊形的內(nèi)角和等于360
49四邊形的外角和等于360
50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)180
51推論任意多邊的外角和等于360
52平行四邊形性質(zhì)定理1平行四邊形的對角相等
53平行四邊形性質(zhì)定理2平行四邊形的對邊相等
54推論夾在兩條平行線間的平行線段相等
55平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分
56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形
60矩形性質(zhì)定理1矩形的四個角都是直角
61矩形性質(zhì)定理2矩形的對角線相等
62矩形判定定理1有三個角是直角的四邊形是矩形
63矩形判定定理2對角線相等的平行四邊形是矩形
64菱形性質(zhì)定理1菱形的四條邊都相等
65菱形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即S=(ab)2
67菱形判定定理1四邊都相等的四邊形是菱形
68菱形判定定理2對角線互相垂直的平行四邊形是菱形
69正方形性質(zhì)定理1正方形的四個角都是直角,四條邊都相等
70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
71定理1關(guān)于中心對稱的兩個圖形是全等的
72定理2關(guān)于中心對稱的兩個圖形,對稱點(diǎn)連線都經(jīng)過對稱中心,并且被對稱中心平分
73逆定理如果兩個圖形的對應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個圖形關(guān)于這一點(diǎn)對稱
74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形
77對角線相等的梯形是等腰梯形
78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79推論1經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰
80推論2經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊
81三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半
82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)2S=Lh
83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
84(2)合比性質(zhì)如果a/b=c/d,那么(ab)/b=(cd)/d
85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n0),那么(a+c+…+m)/(b+d+…+n)=a/b
86平行線分線段成比例定理三條平行線截兩條直線,所得的對應(yīng)線段成比例
87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例
88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊
89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例
90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似
91相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)
92直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)
94判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)
95定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似
96性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比
97性質(zhì)定理2相似三角形周長的比等于相似比
98性質(zhì)定理3相似三角形面積的比等于相似比的平方
99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值
100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
101圓是定點(diǎn)的距離等于定長的點(diǎn)的集合
102圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
104同圓或等圓的半徑相等
105到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓
106和已知線段兩個端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線
107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個角的.平分線
108到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線
109定理不在同一直線上的三點(diǎn)確定一個圓。
110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111推論1
①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
112推論2圓的兩條平行弦所夾的弧相等
113圓是以圓心為對稱中心的中心對稱圖形
114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等
116定理一條弧所對的圓周角等于它所對的圓心角的一半
117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118推論2半圓(或直徑)所對的圓周角是直角;90的圓周角所對的弦是直徑
119推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形
120定理圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角
121①直線L和⊙O相交d<r
②直線L和⊙O相切d=r
③直線L和⊙O相離d>r
122切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
123切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑
124推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)
125推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心
126切線長定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對邊的和相等
128弦切角定理弦切角等于它所夾的弧對的圓周角
129推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等
130相交弦定理圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積相等
131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)
132切割線定理從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長的比例中項(xiàng)
133推論從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長的積相等
134如果兩個圓相切,那么切點(diǎn)一定在連心線上
135①兩圓外離d>R+r
②兩圓外切d=R+r
③兩圓相交R-r<d<R+r(R>r)
④兩圓內(nèi)切d=R-r(R>r)
⑤兩圓內(nèi)含d<R-r(R>r)
136定理相交兩圓的連心線垂直平分兩圓的公共弦
137定理把圓分成n(n3):
⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個圓的內(nèi)接正n邊形
⑵經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個圓的外切正n邊形
138定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓
139正n邊形的每個內(nèi)角都等于(n-2)180/n
140定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141正n邊形的面積Sn=pnrn/2p表示正n邊形的周長
142正三角形面積3a/4a表示邊長
143如果在一個頂點(diǎn)周圍有k個正n邊形的角,由于這些角的和應(yīng)為360,因此k(n-2)180/n=360化為(n-2)(k-2)=4
144弧長計(jì)算公式:L=n兀R/180
145扇形面積公式:S扇形=n兀R^2/360=LR/2146內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)
實(shí)用工具:常用數(shù)學(xué)公式
乘法與因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b||a|+|b||a-b||a|+|b||a|=-bb|a-b||a|-|b|-|a||a|
一元二次方程的解-b+(b2-4ac)/2a-b-(b2-4ac)/2a根與系數(shù)的關(guān)系_1+_2=-b/a_1__2=c/a注:韋達(dá)定理
判別式b2-4ac=0注:方程有兩個相等的實(shí)根
b2-4ac0注:方程有兩個不等的實(shí)根
b2-4ac0注:方程沒有實(shí)根,有共軛復(fù)數(shù)根
三角函數(shù)公式兩角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A)
ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=((1-cosA)/2)
sin(A/2)=-((1-cosA)/2)
cos(A/2)=((1+cosA)/2)
cos(A/2)=-((1+cosA)/2)
tan(A/2)=((1-cosA)/((1+cosA))
tan(A/2)=-((1-cosA)/((1+cosA))
ctg(A/2)=((1+cosA)/((1-cosA))
ctg(A/2)=-((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
某些數(shù)列前n項(xiàng)和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4
1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理:a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑
余弦定理:b2=a2+c2-2accosB注:角B是邊a和邊c的夾角
圓的標(biāo)準(zhǔn)方程:(_-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)
圓的一般方程:_2+y2+D_+Ey+F=0注:D2+E2-4F0
拋物線標(biāo)準(zhǔn)方程:y2=2p_y2=-2p__2=2py_2=-2py
直棱柱側(cè)面積S=c_h
斜棱柱側(cè)面積S=c_h
正棱錐側(cè)面積S=1/2c_h
正棱臺側(cè)面積S=1/2(c+c
圓臺側(cè)面積S=1/2(c+c)l=pi(R+r)l
球的表面積S=4pi_r2
圓柱側(cè)面積S=c_h=2pi_h
圓錐側(cè)面積S=1/2_c_l=pi_r_l
弧長公式l=a_ra是圓心角的弧度數(shù)r0
扇形面積公式s=1/2_l_r
錐體體積公式V=1/3_S_H
圓錐體體積公式V=1/3_pi_r2h
斜棱柱體積V=SL注:其中,S是直截面面積,L是側(cè)棱長柱體體積公式V=s_h圓柱體V=pi_r2h
初中數(shù)學(xué)常用公式大全11
1.有理數(shù)加法。同號相加一邊倒;異號相加“大”減“小”,符號跟著“大”的跑;相反數(shù)相加零正好。(“大”“小”指值較大、較小)
2.有理數(shù)減法。減法要靠加法助,改為“加上相反數(shù)”。
3.有理數(shù)乘除。兩數(shù)乘除,同號正異號負(fù),值相乘除;多個數(shù)乘除數(shù)負(fù)數(shù),偶個得正奇?zhèn)€負(fù)。
4.同類項(xiàng)。是否同類項(xiàng),同字母、同指數(shù),系數(shù)不要管。
5.合并同類項(xiàng)。合并同類項(xiàng),法則不能忘,只把系數(shù)合,指數(shù)不變樣。
6.去、添括號法則。去括號、添括號,關(guān)鍵看符號,括號前面是正號,去、添括號不變號,括號前面是負(fù)號,去、添括號都變號。
7.平方差公式。兩數(shù)和乘兩數(shù)差,各自平方再求差。
8.平方公式。首平方,尾平方,積的二倍在中央,中央符號隨尾項(xiàng)。
9.因式分解。一提(公因式)二套(公式)三交叉(十字交叉法或叫十字相乘法);兩項(xiàng)平方差,三項(xiàng)交叉法;四項(xiàng)要分組,(有)三個平方數(shù),一三來分組,否則二二分兩股;要是行不通,添項(xiàng)、拆項(xiàng)看清楚。
10.單項(xiàng)式運(yùn)算。加減、乘除、乘開方,系數(shù)同級算,指數(shù)降級算。
11.一元一次方程。已知未知要分離,分離方法就是移,加減移項(xiàng)要變號,乘除移了要顛倒。
12.一元一次不等式。去分母、去括號,移項(xiàng)時(shí)要變號,同類項(xiàng)、合并好,再把系數(shù)來除掉,除以負(fù)數(shù)改變不等號。
13.一元一次不等式組的解集。同大大大,同小小小,大小、小大中間找,大大、小小找不到。
14.一元二次不等式、一元一次值不等式的`解集。大于取兩邊,小于取中間。
15.分式混合運(yùn)算法則。分式四則運(yùn)算,順序乘除加減;乘除同級運(yùn)算,除式顛倒變乘;乘法上下約簡,因式分解在先。加減分母需同,分母化積關(guān)鍵;分母進(jìn)行通分,分子跟著改變;再把分子加減,結(jié)果要求簡。
16.分式方程的解法步驟。同乘簡公分母,化成整式寫清楚,求得解后須驗(yàn)根,增根舍去別含糊。
17.簡根式的條件。簡根式三條件,號內(nèi)不把分母見,冪指(數(shù))根指(數(shù))要互質(zhì),冪指比根指小一點(diǎn)。
18.對稱點(diǎn)坐標(biāo)。_軸對稱縱標(biāo)反,Y軸對稱橫標(biāo)反,原點(diǎn)對稱好記,橫縱坐標(biāo)都相反。
19.自變量的取值范圍。分式分母不為零,偶次根下負(fù)不行,零(次)冪底數(shù)不為零,奇次根、整式全都行。
20.一次函數(shù)圖象與性質(zhì)。一次函數(shù)是直線,圖象經(jīng)過三象限,正比(例)函數(shù)它更簡,經(jīng)過原點(diǎn)一線牽;兩個系數(shù)k與b,作用之大要分辨,k是斜率定夾角,b與Y軸來相見;k為正來右上斜,_增減y增減,k為負(fù)來右下斜,一增一減反著變。
21.二次函數(shù)圖象與性質(zhì)。二次函數(shù)拋物線,圖象對稱是關(guān)鍵;開口、頂點(diǎn)和交點(diǎn),它們確定圖象顯;開口、大小由a斷,c與Y軸來相見,b的符號較特別,聯(lián)合a、c定頂點(diǎn);頂點(diǎn)坐標(biāo)重要,配方以后它就到,橫坐標(biāo)是對稱軸,縱坐標(biāo)把值找。
22.反比例函數(shù)圖象與性質(zhì)。反比(例)函數(shù)有特點(diǎn),雙曲(線)相背離得遠(yuǎn);k為正來一三(象)限,k為負(fù)時(shí)二四限;一三象限函數(shù)減,兩個分支分開變。二四象限正相反,兩個分支各自添;上下左右靠近軸,永遠(yuǎn)與軸不沾邊。
23.三角函數(shù)的增減性。正增余減。
24.30、45、60的三角函數(shù)值。一二三,三二一,三九二十七;弦(的分母)是二切是三,分子根號不能刪。
25.平行四邊形的判定。要證平行四邊形,兩個條件才能行,一證對邊都相等,或證對邊都平行,一組對邊也可以,須相等且平行;對角線,是個寶,互相平分跑不了;對角相等也不孬,兩組對角湊熱鬧。
初中數(shù)學(xué)常用公式大全12
一、常用數(shù)學(xué)公式之三角函數(shù)公式
半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
二、初中數(shù)學(xué)正方形定理公式
關(guān)于正方形定理公式的內(nèi)容精講知識,希望同學(xué)們很好的掌握下面的內(nèi)容。
正方形定理公式
特征:
①正方形的四邊相等;
②正方形的四個角都是直角;
③正方形的兩條對角線相等,且互相垂直平分,每一條對角線平分一組對角;
判定:
①有一個角是直角的菱形是正方形;
②有一組鄰邊相等的矩形是正方形。
三、初中數(shù)學(xué)平行四邊形定理公式
同學(xué)們認(rèn)真學(xué)習(xí),下面是老師對數(shù)學(xué)中平行四邊形定理公式的內(nèi)容講解。
平行四邊形
性質(zhì):
①平行四邊形的對邊相等;
②平行四邊形的對角相等;
③平行四邊形的對角線互相平分;
判定:
①兩組對角分別相等的四邊形是平行四邊形;
②兩組對邊分別相等的四邊形是平行四邊形;
③對角線互相平分的四邊形是平行四邊形;
④一組對邊平行且相等的四邊形是平行四邊形。
四、初中數(shù)學(xué)直角三角形定理公式
下面是對直角三角形定理公式的內(nèi)容講解,希望給同學(xué)們的學(xué)習(xí)很好的幫助。
性質(zhì):
①直角三角形的兩個銳角互為余角;
②直角三角形斜邊上的中線等于斜邊的一半;
③直角三角形的兩直角邊的平方和等于斜邊的平方(勾股定理);
④直角三角形中30度角所對的直角邊等于斜邊的一半;
判定:
①有兩個角互余的三角形是直角三角形;
②如果三角形的三邊長a、b、c有下面關(guān)系a^2+b^2=c^2,那么這個三角形是直角三角形(勾股定理的逆定理)。
五、初中數(shù)學(xué)等腰三角形的性質(zhì)定理公式
下面是對等腰三角形的性質(zhì)定理公式的內(nèi)容學(xué)習(xí),希望同學(xué)們認(rèn)真看看。
性質(zhì):
①等腰三角形的兩個底角相等;
②等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合(三線合一)
六、初中數(shù)學(xué)三角形定理公式
對于三角形定理公式的學(xué)習(xí),我們做下面的內(nèi)容講解學(xué)習(xí)哦。
三角形
三角形的'三邊關(guān)系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊;
三角形的內(nèi)角和定理:三角形的三個內(nèi)角的和等于180度;
三角形的外角和定理:三角形的一個外角等于和它不相鄰的兩個的和;
三角形的外角和定理推理:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;
三角形的三條角平分線交于一點(diǎn)(內(nèi)心);
三角形的三邊的垂直平分線交于一點(diǎn)(外心);
三角形中位線定理:三角形兩邊中點(diǎn)的連線平行于第三邊,并且等于第三邊的一半;
以上對三角形定理公式的內(nèi)容講解學(xué)習(xí),希望同學(xué)們都能很好的掌握,并在考試中取得很好的成績哦。
初中數(shù)學(xué)常用公式大全13
輔助角公式:
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
初中數(shù)學(xué)正方形定理公式
正方形定理公式
正方形的特征:
①正方形的四邊相等;
②正方形的四個角都是直角;
③正方形的兩條對角線相等,且互相垂直平分,每一條對角線平分一組對角;
正方形的判定:
①有一個角是直角的菱形是正方形;
②有一組鄰邊相等的矩形是正方形。
希望上面對正方形定理公式知識的講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會取得很好的成績的.哦。
初中數(shù)學(xué)平行四邊形定理公式
平行四邊形
平行四邊形的性質(zhì):
①平行四邊形的對邊相等;
②平行四邊形的對角相等;
③平行四邊形的對角線互相平分;
初中數(shù)學(xué)常用公式大全14
1.一元一次方程:已知未知要分離,分離方法就是移,加減移項(xiàng)要變號,乘除移了要顛倒。
2.恒等變換:兩個數(shù)字來相減,互換位置常見,正負(fù)只看其指數(shù),奇數(shù)變號偶不變。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n
3.平方差公式:平方差公式有兩項(xiàng),符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。
4.完全平方:完全平方有三項(xiàng),首尾符號是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;首±尾括號帶平方,尾項(xiàng)符號隨中央。
5.因式分解:一提(公因式)二套(公式)三分組,細(xì)看幾項(xiàng)不離譜,兩項(xiàng)只用平方差,三項(xiàng)十字相乘法,陣法熟練不馬虎,四項(xiàng)仔細(xì)看清楚,若有三個平方數(shù)(項(xiàng)),就用一三來分組,否則二二去分組,五項(xiàng)、六項(xiàng)更多項(xiàng),二三、三三試分組,以上若都行不通,拆項(xiàng)、添項(xiàng)看清楚。
6.“代入”口決:挖去字母換上數(shù)(式),數(shù)字、字母都保留;換上分?jǐn)?shù)或負(fù)數(shù),給它帶上小括弧,原括弧內(nèi)出(現(xiàn))括弧,逐級向下變括弧(小—中—大)
7.有
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版環(huán)保項(xiàng)目臨時(shí)工勞動合同4篇
- 基于2025年度計(jì)劃的環(huán)保項(xiàng)目合作協(xié)議3篇
- 2025年智能水電表更換與數(shù)據(jù)采集服務(wù)合同4篇
- 2025年度個人退房協(xié)議書范本(適用于商業(yè)地產(chǎn))4篇
- 二零二五版建筑工程公司資質(zhì)借用與施工監(jiān)督服務(wù)協(xié)議3篇
- 二零二五年度商業(yè)綜合體場地租賃合同范本6篇
- 專利授權(quán)事務(wù)全權(quán)委托合同書版B版
- 2025年度排水溝施工安全協(xié)議書范本
- 2025種植蓮藕池塘承包與水肥一體化管理合同3篇
- 二零二五年度農(nóng)業(yè)企業(yè)財(cái)務(wù)風(fēng)險(xiǎn)控制出納人員擔(dān)保合同3篇
- GB/T 45107-2024表土剝離及其再利用技術(shù)要求
- 2024-2025學(xué)年八年級上學(xué)期1月期末物理試題(含答案)
- 商場電氣設(shè)備維護(hù)勞務(wù)合同
- 2023年國家公務(wù)員錄用考試《行測》真題(行政執(zhí)法)及答案解析
- 2024智慧醫(yī)療數(shù)據(jù)字典標(biāo)準(zhǔn)值域代碼
- 年產(chǎn)12萬噸裝配式智能鋼結(jié)構(gòu)項(xiàng)目可行性研究報(bào)告模板-立項(xiàng)備案
- 【獨(dú)家揭秘】2024年企業(yè)微信年費(fèi)全解析:9大行業(yè)收費(fèi)標(biāo)準(zhǔn)一覽
- 醫(yī)療器械經(jīng)銷商會議
- 《±1100kV特高壓直流換流變壓器使用技術(shù)條件》
- 1-1 擁抱夢想:就這樣埋下一顆種子【2022中考作文最熱8主題押題24道 構(gòu)思點(diǎn)撥+范文點(diǎn)評】
- 《風(fēng)電場項(xiàng)目經(jīng)濟(jì)評價(jià)規(guī)范》(NB-T 31085-2016)
評論
0/150
提交評論