2023-2024學年河北省承德市豐寧縣中考數(shù)學模擬預測題含解析_第1頁
2023-2024學年河北省承德市豐寧縣中考數(shù)學模擬預測題含解析_第2頁
2023-2024學年河北省承德市豐寧縣中考數(shù)學模擬預測題含解析_第3頁
2023-2024學年河北省承德市豐寧縣中考數(shù)學模擬預測題含解析_第4頁
2023-2024學年河北省承德市豐寧縣中考數(shù)學模擬預測題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2023-2024學年河北省承德市豐寧縣中考數(shù)學模擬預測題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,已知兩個全等的直角三角形紙片的直角邊分別為、,將這兩個三角形的一組等邊重合,拼合成一個無重疊的幾何圖形,其中軸對稱圖形有()A.3個; B.4個; C.5個; D.6個.2.若分式有意義,則x的取值范圍是A.x>1 B.x<1 C.x≠1 D.x≠03.不等式5+2x<1的解集在數(shù)軸上表示正確的是().A. B. C. D.4.如果t>0,那么a+t與a的大小關(guān)系是()A.a(chǎn)+t>aB.a(chǎn)+t<aC.a(chǎn)+t≥aD.不能確定5.弘揚社會主義核心價值觀,推動文明城市建設.根據(jù)“文明創(chuàng)建工作評分細則”,l0名評審團成員對我市2016年度文明刨建工作進行認真評分,結(jié)果如下表:人數(shù)2341分數(shù)80859095則得分的眾數(shù)和中位數(shù)分別是()A.90和87.5 B.95和85 C.90和85 D.85和87.56.如圖是正方體的表面展開圖,則與“前”字相對的字是()A.認 B.真 C.復 D.習7.已知⊙O及⊙O外一點P,過點P作出⊙O的一條切線(只有圓規(guī)和三角板這兩種工具),以下是甲、乙兩同學的作業(yè):甲:①連接OP,作OP的垂直平分線l,交OP于點A;②以點A為圓心、OA為半徑畫弧、交⊙O于點M;③作直線PM,則直線PM即為所求(如圖1).乙:①讓直角三角板的一條直角邊始終經(jīng)過點P;②調(diào)整直角三角板的位置,讓它的另一條直角邊過圓心O,直角頂點落在⊙O上,記這時直角頂點的位置為點M;③作直線PM,則直線PM即為所求(如圖2).對于兩人的作業(yè),下列說法正確的是()A.甲乙都對 B.甲乙都不對C.甲對,乙不對 D.甲不對,已對8.如圖,在扇形CAB中,CA=4,∠CAB=120°,D為CA的中點,P為弧BC上一動點(不與C,B重合),則2PD+PB的最小值為()A.4+23 B.439.在體育課上,甲,乙兩名同學分別進行了5次跳遠測試,經(jīng)計算他們的平均成績相同.若要比較這兩名同學的成績哪一個更為穩(wěn)定,通常需要比較他們成績的()A.眾數(shù) B.平均數(shù) C.中位數(shù) D.方差10.如圖,在以O為原點的直角坐標系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù)(x>0)與AB相交于點D,與BC相交于點E,若BD=3AD,且△ODE的面積是9,則k的值是()A. B. C. D.12二、填空題(共7小題,每小題3分,滿分21分)11.在數(shù)軸上,點A和點B分別表示數(shù)a和b,且在原點的兩側(cè),若=2016,AO=2BO,則a+b=_____12.如圖,在△ABC中,AB=AC,以點C為圓心,以CB長為半徑作圓弧,交AC的延長線于點D,連結(jié)BD,若∠A=32°,則∠CDB的大小為_____度.13.使有意義的x的取值范圍是______.14.已知一組數(shù)據(jù),,﹣2,3,1,6的中位數(shù)為1,則其方差為____.15.如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點A在反比例函數(shù)y=的圖象上.若點B在反比例函數(shù)y=的圖象上,則k的值為_____.16.若2x+y=2,則4x+1+2y的值是_______.17.在△ABC中,∠BAC=45°,∠ACB=75°,分別以A、C為圓心,以大于AC的長為半徑畫弧,兩弧交于F、G作直線FG,分別交AB,AC于點D、E,若AC的長為4,則BC的長為_____.三、解答題(共7小題,滿分69分)18.(10分)先化簡,再求值:(﹣a)÷(1+),其中a是不等式﹣<a<的整數(shù)解.19.(5分)如圖,一根電線桿PQ直立在山坡上,從地面的點A看,測得桿頂端點P的仰角為45°,向前走6m到達點B,又測得桿頂端點P和桿底端點Q的仰角分別為60°和30°,求電線桿PQ的高度.(結(jié)果保留根號).20.(8分)如圖,拋物線與x軸交于點A,B,與軸交于點C,過點C作CD∥x軸,交拋物線的對稱軸于點D,連結(jié)BD,已知點A坐標為(-1,0).求該拋物線的解析式;求梯形COBD的面積.21.(10分)如圖,對稱軸為直線的拋物線與x軸相交于A、B兩點,其中A點的坐標為(-3,0).(1)求點B的坐標;(2)已知,C為拋物線與y軸的交點.①若點P在拋物線上,且,求點P的坐標;②設點Q是線段AC上的動點,作QD⊥x軸交拋物線于點D,求線段QD長度的最大值.22.(10分)先化簡,再求值:﹣1,其中a=2sin60°﹣tan45°,b=1.23.(12分)如圖,AB是⊙O的直徑,點C是弧AB的中點,點D是⊙O外一點,AD=AB,AD交⊙O于F,BD交⊙O于E,連接CE交AB于G.(1)證明:∠C=∠D;(2)若∠BEF=140°,求∠C的度數(shù);(3)若EF=2,tanB=3,求CE?CG的值.24.(14分)如圖,AC是⊙O的直徑,BC是⊙O的弦,點P是⊙O外一點,連接PA、PB、AB、OP,已知PB是⊙O的切線.(1)求證:∠PBA=∠C;(2)若OP∥BC,且OP=9,⊙O的半徑為3,求BC的長.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】分析:直接利用軸對稱圖形的性質(zhì)進而分析得出答案.詳解:如圖所示:將這兩個三角形的一組等邊重合,拼合成一個無重疊的幾何圖形,其中軸對稱圖形有4個.故選B.點睛:本題主要考查了全等三角形的性質(zhì)和軸對稱圖形,正確把握軸對稱圖形的性質(zhì)是解題的關(guān)鍵.2、C【解析】

分式分母不為0,所以,解得.故選:C.3、C【解析】

先解不等式得到x<-1,根據(jù)數(shù)軸表示數(shù)的方法得到解集在-1的左邊.【詳解】5+1x<1,移項得1x<-4,系數(shù)化為1得x<-1.故選C.【點睛】本題考查了在數(shù)軸上表示不等式的解集:先求出不等式組的解集,然后根據(jù)數(shù)軸表示數(shù)的方法把對應的未知數(shù)的取值范圍通過畫區(qū)間的方法表示出來,等號時用實心,不等時用空心.4、A【解析】試題分析:根據(jù)不等式的基本性質(zhì)即可得到結(jié)果.t>0,∴a+t>a,故選A.考點:本題考查的是不等式的基本性質(zhì)點評:解答本題的關(guān)鍵是熟練掌握不等式的基本性質(zhì)1:不等式兩邊同時加或減去同一個整式,不等號方向不變.5、A【解析】找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),可得答案.解:在這一組數(shù)據(jù)中90是出現(xiàn)次數(shù)最多的,故眾數(shù)是90;排序后處于中間位置的那個數(shù),那么由中位數(shù)的定義可知,這組數(shù)據(jù)的中位數(shù)是87.5;故選:A.“點睛”本題考查了眾數(shù)、中位數(shù)的知識,掌握各知識點的概念是解答本題的關(guān)鍵.注意中位數(shù):將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).6、B【解析】分析:由平面圖形的折疊以及正方體的展開圖解題,罪域正方體的平面展開圖中相對的面一定相隔一個小正方形.詳解:由圖形可知,與“前”字相對的字是“真”.故選B.點睛:本題考查了正方體的平面展開圖,注意正方體的空間圖形,從相對面入手分析及解答問題.7、A【解析】

(1)連接OM,OA,連接OP,作OP的垂直平分線l可得OA=MA=AP,進而得到∠O=∠AMO,∠AMP=∠MPA,所以∠OMA+∠AMP=∠O+∠MPA=90°,得出MP是⊙O的切線,(1)直角三角板的一條直角邊始終經(jīng)過點P,它的另一條直角邊過圓心O,直角頂點落在⊙O上,所以∠OMP=90°,得到MP是⊙O的切線.【詳解】證明:(1)如圖1,連接OM,OA.∵連接OP,作OP的垂直平分線l,交OP于點A,∴OA=AP.∵以點A為圓心、OA為半徑畫弧、交⊙O于點M;∴OA=MA=AP,∴∠O=∠AMO,∠AMP=∠MPA,∴∠OMA+∠AMP=∠O+∠MPA=90°,∴OM⊥MP,∴MP是⊙O的切線;(1)如圖1.∵直角三角板的一條直角邊始終經(jīng)過點P,它的另一條直角邊過圓心O,直角頂點落在⊙O上,∴∠OMP=90°,∴MP是⊙O的切線.故兩位同學的作法都正確.故選A.【點睛】本題考查了復雜的作圖,重點是運用切線的判定來說明作法的正確性.8、D【解析】

如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,推出△APD∽△ABP′,得到BP′=2PD,于是得到2PD+PB=BP′+PB≥PP′,根據(jù)勾股定理得到PP′=2+82+(2【詳解】如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,∵AP'AB∴△APD∽△ABP′,∴BP′=2PD,∴2PD+PB=BP′+PB≥PP′,∴PP′=2+82∴2PD+PB≥47,∴2PD+PB的最小值為47,故選D.【點睛】本題考查了軸對稱-最短距離問題,相似三角形的判定和性質(zhì),勾股定理,正確的作出輔助線是解題的關(guān)鍵.9、D【解析】

方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則各數(shù)據(jù)與其平均值的離散程度越大,穩(wěn)定性也越?。环粗?,則各數(shù)據(jù)與其平均值的離散程度越小,穩(wěn)定性越好?!驹斀狻坑捎诜讲钅芊从硵?shù)據(jù)的穩(wěn)定性,需要比較這兩名學生立定跳遠成績的方差.故選D.10、C【解析】

設B點的坐標為(a,b),由BD=3AD,得D(,b),根據(jù)反比例函數(shù)定義求出關(guān)鍵點坐標,根據(jù)S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=9求出k.【詳解】∵四邊形OCBA是矩形,∴AB=OC,OA=BC,設B點的坐標為(a,b),∵BD=3AD,∴D(,b),∵點D,E在反比例函數(shù)的圖象上,∴=k,∴E(a,

),∵S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=ab-?-?-??(b-)=9,∴k=,故選:C【點睛】考核知識點:反比例函數(shù)系數(shù)k的幾何意義.結(jié)合圖形,分析圖形面積關(guān)系是關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、-672或672【解析】∵,∴a-b=±2016,∵AO=2BO,A和點B分別在原點的兩側(cè)∴a=-2b.當a-b=2016時,∴-2b-b=2016,解得:b=-672.∴a=?2×(-672)=1342,∴a+b=1344+(-672)=672.同理可得當a-b=-2016時,a+b=-672,∴a+b=±672,故答案為:?672或672.12、1【解析】

根據(jù)等腰三角形的性質(zhì)以及三角形內(nèi)角和定理在△ABC中可求得∠ACB=∠ABC=74°,根據(jù)等腰三角形的性質(zhì)以及三角形外角的性質(zhì)在△BCD中可求得∠CDB=∠CBD=∠ACB=1°.【詳解】∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=1°,故答案為1.【點睛】本題主要考查等腰三角形的性質(zhì),三角形外角的性質(zhì),掌握等邊對等角是解題的關(guān)鍵,注意三角形內(nèi)角和定理的應用.13、【解析】二次根式有意義的條件.【分析】根據(jù)二次根式被開方數(shù)必須是非負數(shù)的條件,要使在實數(shù)范圍內(nèi)有意義,必須.14、3【解析】試題分析:∵數(shù)據(jù)﹣3,x,﹣3,3,3,6的中位數(shù)為3,∴,解得x=3,∴數(shù)據(jù)的平均數(shù)=(﹣3﹣3+3+3+3+6)=3,∴方差=[(﹣3﹣3)3+(﹣3﹣3)3+(3﹣3)3+(3﹣3)3+(3﹣3)3+(6﹣3)3]=3.故答案為3.考點:3.方差;3.中位數(shù).15、﹣2【解析】

要求函數(shù)的解析式只要求出B點的坐標就可以,過點A,B作AC⊥x軸,BD⊥x軸,分別于C,D.根據(jù)條件得到△ACO∽△ODB,得到:=1,然后用待定系數(shù)法即可.【詳解】過點A,B作AC⊥x軸,BD⊥x軸,分別于C,D.設點A的坐標是(m,n),則AC=n,OC=m.∵∠AOB=90°,∴∠AOC+∠BOD=90°.∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC.∵∠BDO=∠ACO=90°,∴△BDO∽△OCA.∴,∵OB=1OA,∴BD=1m,OD=1n.因為點A在反比例函數(shù)y=的圖象上,∴mn=1.∵點B在反比例函數(shù)y=的圖象上,∴B點的坐標是(-1n,1m).∴k=-1n?1m=-4mn=-2.故答案為-2.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,相似三角形的判定和性質(zhì),利用相似三角形的性質(zhì)求得點B的坐標(用含n的式子表示)是解題的關(guān)鍵.16、1【解析】分析:將原式化簡成2(2x+y)+1,然后利用整體代入的思想進行求解得出答案.詳解:原式=2(2x+y)+1=2×2+1=1.點睛:本題主要考查的是整體思想求解,屬于基礎題型.找到整體是解題的關(guān)鍵.17、【解析】

連接CD在根據(jù)垂直平分線的性質(zhì)可得到△ADC為等腰直角三角形,結(jié)合已知的即可得到∠BCD的大小,然后就可以解答出此題【詳解】解:連接CD,∵DE垂直平分AC,∴AD=CD,∴∠DCA=∠BAC=45°,∴△ADC是等腰直角三角形,∴,∠ADC=90°,∴∠BDC=90°,∵∠ACB=75°,∴∠BCD=30°,∴BC=,故答案為.【點睛】此題主要考查垂直平分線的性質(zhì),解題關(guān)鍵在于連接CD利用垂直平分線的性質(zhì)證明△ADC為等腰直角三角形三、解答題(共7小題,滿分69分)18、,1.【解析】

首先化簡(﹣a)÷(1+),然后根據(jù)a是不等式﹣<a<的整數(shù)解,求出a的值,再把求出的a的值代入化簡后的算式,求出算式的值是多少即可.【詳解】解:(﹣a)÷(1+)=×=,∵a是不等式﹣<a<的整數(shù)解,∴a=﹣1,1,1,∵a≠1,a+1≠1,∴a≠1,﹣1,∴a=1,當a=1時,原式==1.19、(6+)米【解析】

根據(jù)已知的邊和角,設CQ=x,BC=QC=x,PC=BC=3x,根據(jù)PQ=BQ列出方程求解即可.【詳解】解:延長PQ交地面與點C,由題意可得:AB=6m,∠PCA=90°,∠PAC=45°,∠PBC=60°,∠QBC=30°,設CQ=x,則在Rt△BQC中,BC=QC=x,∴在Rt△PBC中PC=BC=3x,∵在Rt△PAC中,∠PAC=45°,則PC=AC,∴,3x=6+x,解得x==3+,∴PQ=PC-CQ=3x-x=2x=6+,則電線桿PQ高為(6+)米.【點睛】此題重點考察學生對解直角三角形的理解,掌握解直角三角形的方法是解題的關(guān)鍵.20、(1)(2)【解析】

(1)將A坐標代入拋物線解析式,求出a的值,即可確定出解析式.(2)拋物線解析式令x=0求出y的值,求出OC的長,根據(jù)對稱軸求出CD的長,令y=0求出x的值,確定出OB的長,根據(jù)梯形面積公式即可求出梯形COBD的面積.【詳解】(1)將A(―1,0)代入中,得:0=4a+4,解得:a=-1.∴該拋物線解析式為.(2)對于拋物線解析式,令x=0,得到y(tǒng)=2,即OC=2,∵拋物線的對稱軸為直線x=1,∴CD=1.∵A(-1,0),∴B(2,0),即OB=2.∴.21、(1)點B的坐標為(1,0).(2)①點P的坐標為(4,21)或(-4,5).②線段QD長度的最大值為.【解析】

(1)由拋物線的對稱性直接得點B的坐標.(2)①用待定系數(shù)法求出拋物線的解析式,從而可得點C的坐標,得到,設出點P的坐標,根據(jù)列式求解即可求得點P的坐標.②用待定系數(shù)法求出直線AC的解析式,由點Q在線段AC上,可設點Q的坐標為(q,-q-3),從而由QD⊥x軸交拋物線于點D,得點D的坐標為(q,q2+2q-3),從而線段QD等于兩點縱坐標之差,列出函數(shù)關(guān)系式應用二次函數(shù)最值原理求解.【詳解】解:(1)∵A、B兩點關(guān)于對稱軸對稱,且A點的坐標為(-3,0),∴點B的坐標為(1,0).(2)①∵拋物線,對稱軸為,經(jīng)過點A(-3,0),∴,解得.∴拋物線的解析式為.∴B點的坐標為(0,-3).∴OB=1,OC=3.∴.設點P的坐標為(p,p2+2p-3),則.∵,∴,解得.當時;當時,,∴點P的坐標為(4,21)或(-4,5).②設直線AC的解析式為,將點A,C的坐標代入,得:,解得:.∴直線AC的解析式為.∵點Q在線段AC上,∴設點Q的坐標為(q,-q-3).又∵QD⊥x軸交拋物線于點D,∴點D的坐標為(q,q2+2q-3).∴.∵,∴線段QD長度的最大值為.22、【解析】

對待求式的分子、分母進行因式分解,并將除法化為乘法可得×-1,通過約分即可得到化簡結(jié)果;先利用特殊角的三角函數(shù)值求出a的值,再將a、b的值代入化簡結(jié)果中計算即可解答本題.【詳解】原式=×-1=-1==,當a═2sin60°﹣tan45°=2×﹣1=﹣1,b=1時,原式=.【點睛】本題考查了分式的化簡求值,解題的關(guān)鍵是熟練的掌握分式的化簡求值運算法則.23、(1)見解析;(2)70°;(3)1.【解析】

(1)先根據(jù)等邊對等角得出∠B=∠D,即可得出結(jié)論;(2)先判斷出∠DFE=∠B,進而得出∠D=∠DFE,即可求出∠D=70°,即可得出結(jié)論;(3)先求出BE=EF=2,進而求AE=6,即可得出AB,進而求出AC,再判斷出△ACG∽△ECA,即可得出結(jié)論.【詳解】(1)∵AB=AD,∴∠B=∠D,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論