版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年廣西壯族自治區(qū)南寧市中考聯(lián)考數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,四邊形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=1.M是BD的中點(diǎn),則CM的長為()A. B.2 C. D.32.我國古代數(shù)學(xué)著作《增刪算法統(tǒng)宗》記載”繩索量竿”問題:“一條竿子一條索,索比竿子長一托.折回索子卻量竿,卻比竿子短一托“其大意為:現(xiàn)有一根竿和一條繩索,用繩索去量竿,繩索比竿長5尺;如果將繩索對(duì)半折后再去量竿,就比竿短5尺.設(shè)繩索長x尺,竿長y尺,則符合題意的方程組是()A. B. C. D.3.如圖,網(wǎng)格中的每個(gè)小正方形的邊長是1,點(diǎn)M,N,O均為格點(diǎn),點(diǎn)N在⊙O上,若過點(diǎn)M作⊙O的一條切線MK,切點(diǎn)為K,則MK=()A.3 B.2 C.5 D.4.如圖,四邊形ABCD內(nèi)接于⊙O,AD∥BC,BD平分∠ABC,∠A=130°,則∠BDC的度數(shù)為()A.100° B.105° C.110° D.115°5.如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下四個(gè)結(jié)論:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正確的結(jié)論有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)6.如圖,已知E,B,F(xiàn),C四點(diǎn)在一條直線上,,,添加以下條件之一,仍不能證明≌的是A. B. C. D.7.如圖,在△ABC中,AB=5,AC=4,∠A=60°,若邊AC的垂直平分線DE交AB于點(diǎn)D,連接CD,則△BDC的周長為()A.8 B.9 C.5+ D.5+8.如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時(shí),梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米,如果保持梯子底端位置不動(dòng),將梯子斜靠在右墻時(shí),頂端距離地面2米,那么小巷的寬度為()A.0.7米 B.1.5米 C.2.2米 D.2.4米9.下列各式計(jì)算正確的是()A.a(chǎn)2+2a3=3a5 B.a(chǎn)?a2=a3 C.a(chǎn)6÷a2=a3 D.(a2)3=a510.如圖是由若干個(gè)小正方體組成的幾何體從上面看到的圖形,小正方形中的數(shù)字表示該位置小正方體的個(gè)數(shù),這個(gè)幾何體從正面看到的圖形是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.若|a|=2016,則a=___________.12.計(jì)算×3結(jié)果等于_____.13.如圖,10塊相同的小長方形墻磚拼成一個(gè)大長方形,設(shè)小長方形墻磚的長和寬分別為x厘米和y厘米,則列出的方程組為_____.14.圓錐的底面半徑為6㎝,母線長為10㎝,則圓錐的側(cè)面積為______cm215.拋物線y=x2﹣4x+與x軸的一個(gè)交點(diǎn)的坐標(biāo)為(1,0),則此拋物線與x軸的另一個(gè)交點(diǎn)的坐標(biāo)是______.16.已知m、n是一元二次方程x2+4x﹣1=0的兩實(shí)數(shù)根,則=_____.17.若m、n是方程x2+2018x﹣1=0的兩個(gè)根,則m2n+mn2﹣mn=_________.三、解答題(共7小題,滿分69分)18.(10分)先化簡,再求值:(1+)÷,其中x=+1.19.(5分)已知關(guān)于x的一元二次方程x2﹣(2m+3)x+m2+2=1.(1)若方程有實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;(2)若方程兩實(shí)數(shù)根分別為x1、x2,且滿足x12+x22=31+|x1x2|,求實(shí)數(shù)m的值.20.(8分)如圖,AB為☉O的直徑,CD與☉O相切于點(diǎn)E,交AB的延長線于點(diǎn)D,連接BE,過點(diǎn)O作OC∥BE,交☉O于點(diǎn)F,交切線于點(diǎn)C,連接AC.(1)求證:AC是☉O的切線;(2)連接EF,當(dāng)∠D=°時(shí),四邊形FOBE是菱形.21.(10分)如圖,點(diǎn)在的直徑的延長線上,點(diǎn)在上,且AC=CD,∠ACD=120°.求證:是的切線;若的半徑為2,求圖中陰影部分的面積.22.(10分)如圖,在一筆直的海岸線l上有A、B兩個(gè)碼頭,A在B的正東方向,一艘小船從A碼頭沿它的北偏西60°的方向行駛了20海里到達(dá)點(diǎn)P處,此時(shí)從B碼頭測得小船在它的北偏東45°的方向.求此時(shí)小船到B碼頭的距離(即BP的長)和A、B兩個(gè)碼頭間的距離(結(jié)果都保留根號(hào)).23.(12分)解方程:24.(14分)某班為了解學(xué)生一學(xué)期做義工的時(shí)間情況,對(duì)全班50名學(xué)生進(jìn)行調(diào)查,按做義工的時(shí)間(單位:小時(shí)),將學(xué)生分成五類:類(),類(),類(),類(),類(),繪制成尚不完整的條形統(tǒng)計(jì)圖如圖11.根據(jù)以上信息,解答下列問題:類學(xué)生有人,補(bǔ)全條形統(tǒng)計(jì)圖;類學(xué)生人數(shù)占被調(diào)查總?cè)藬?shù)的%;從該班做義工時(shí)間在的學(xué)生中任選2人,求這2人做義工時(shí)間都在中的概率.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解析】
延長BC到E使BE=AD,利用中點(diǎn)的性質(zhì)得到CM=DE=AB,再利用勾股定理進(jìn)行計(jì)算即可解答.【詳解】解:延長BC到E使BE=AD,∵BC//AD,∴四邊形ACED是平行四邊形,∴DE=AB,∵BC=3,AD=1,∴C是BE的中點(diǎn),∵M(jìn)是BD的中點(diǎn),∴CM=DE=AB,∵AC⊥BC,∴AB==,∴CM=,故選:C.【點(diǎn)睛】此題考查平行四邊形的性質(zhì),勾股定理,解題關(guān)鍵在于作輔助線.2、A【解析】
設(shè)索長為x尺,竿子長為y尺,根據(jù)“索比竿子長一托,折回索子卻量竿,卻比竿子短一托”,即可得出關(guān)于x、y的二元一次方程組.【詳解】設(shè)索長為x尺,竿子長為y尺,根據(jù)題意得:.故選A.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出二元一次方程組是解題的關(guān)鍵.3、B【解析】
以O(shè)M為直徑作圓交⊙O于K,利用圓周角定理得到∠MKO=90°.從而得到KM⊥OK,進(jìn)而利用勾股定理求解.【詳解】如圖所示:MK=.故選:B.【點(diǎn)睛】考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點(diǎn)的半徑.若出現(xiàn)圓的切線,必連過切點(diǎn)的半徑,構(gòu)造定理圖,得出垂直關(guān)系.4、B【解析】
根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠C的度數(shù),進(jìn)而利用平行線的性質(zhì)得出∠ABC的度數(shù),利用角平分線的定義和三角形內(nèi)角和解答即可.【詳解】∵四邊形ABCD內(nèi)接于⊙O,∠A=130°,
∴∠C=180°-130°=50°,
∵AD∥BC,
∴∠ABC=180°-∠A=50°,
∵BD平分∠ABC,
∴∠DBC=25°,
∴∠BDC=180°-25°-50°=105°,
故選:B.【點(diǎn)睛】本題考查了圓內(nèi)接四邊形的性質(zhì),關(guān)鍵是根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠C的度數(shù).5、C【解析】
根據(jù)圖像可得:a<0,b<0,c=0,即abc=0,則①正確;當(dāng)x=1時(shí),y<0,即a+b+c<0,則②錯(cuò)誤;根據(jù)對(duì)稱軸可得:-b2a=-3根據(jù)函數(shù)與x軸有兩個(gè)交點(diǎn)可得:b2故選C.【點(diǎn)睛】本題考查二次函數(shù)的性質(zhì).能通過圖象分析a,b,c的正負(fù),以及通過一些特殊點(diǎn)的位置得出a,b,c之間的關(guān)系是解題關(guān)鍵.6、B【解析】
由EB=CF,可得出EF=BC,又有∠A=∠D,本題具備了一組邊、一組角對(duì)應(yīng)相等,為了再添一個(gè)條件仍不能證明△ABC≌△DEF,那么添加的條件與原來的條件可形成SSA,就不能證明△ABC≌△DEF了.【詳解】添加,根據(jù)AAS能證明≌,故A選項(xiàng)不符合題意.B.添加與原條件滿足SSA,不能證明≌,故B選項(xiàng)符合題意;C.添加,可得,根據(jù)AAS能證明≌,故C選項(xiàng)不符合題意;D.添加,可得,根據(jù)AAS能證明≌,故D選項(xiàng)不符合題意,故選B.【點(diǎn)睛】本題考查了三角形全等的判定方法,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.7、C【解析】
過點(diǎn)C作CM⊥AB,垂足為M,根據(jù)勾股定理求出BC的長,再根據(jù)DE是線段AC的垂直平分線可得△ADC等邊三角形,則CD=AD=AC=4,代入數(shù)值計(jì)算即可.【詳解】過點(diǎn)C作CM⊥AB,垂足為M,在Rt△AMC中,∵∠A=60°,AC=4,∴AM=2,MC=2,∴BM=AB-AM=3,在Rt△BMC中,BC===,∵DE是線段AC的垂直平分線,∴AD=DC,∵∠A=60°,∴△ADC等邊三角形,∴CD=AD=AC=4,∴△BDC的周長=DB+DC+BC=AD+DB+BC=AB+BC=5+.故答案選C.【點(diǎn)睛】本題考查了勾股定理,解題的關(guān)鍵是熟練的掌握勾股定理的運(yùn)算.8、C【解析】
在直角三角形中利用勾股定理計(jì)算出直角邊,即可求出小巷寬度.【詳解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故選C.【點(diǎn)睛】本題考查勾股定理的運(yùn)用,利用梯子長度不變找到斜邊是關(guān)鍵.9、B【解析】
根據(jù)冪的乘方,底數(shù)不變指數(shù)相乘;同底數(shù)冪相除,底數(shù)不變,指數(shù)相減;同底數(shù)冪相乘,底數(shù)不變指數(shù)相加,對(duì)各選項(xiàng)分析判斷利用排除法求解【詳解】A.a2與2a3不是同類項(xiàng),故A不正確;B.a?a2=a3,正確;C.原式=a4,故C不正確;D.原式=a6,故D不正確;故選:B.【點(diǎn)睛】此題考查同底數(shù)冪的乘法,冪的乘方與積的乘方,解題的關(guān)鍵在于掌握運(yùn)算法則.10、C【解析】
先根據(jù)俯視圖判斷出幾何體的形狀,再根據(jù)主視圖是從正面看畫出圖形即可.【詳解】解:由俯視圖可知,幾何體共有兩排,前面一排從左到右分別是1個(gè)和2個(gè)小正方體搭成兩個(gè)長方體,
后面一排分別有2個(gè)、3個(gè)、1個(gè)小正方體搭成三個(gè)長方體,
并且這兩排右齊,故從正面看到的視圖為:.
故選:C.【點(diǎn)睛】本題考查幾何體三視圖,熟記三視圖的概念并判斷出物體的排列方式是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、±1【解析】試題分析:根據(jù)零指數(shù)冪的性質(zhì)(),可知|a|=1,座椅可知a=±1.12、1【解析】
根據(jù)二次根式的乘法法則進(jìn)行計(jì)算即可.【詳解】故答案為:1.【點(diǎn)睛】考查二次根式的乘法,掌握二次根式乘法的運(yùn)算法則是解題的關(guān)鍵.13、【解析】
根據(jù)圖示可得:長方形的長可以表示為x+2y,長又是75厘米,故x+2y=75,長方形的寬可以表示為2x,或x+3y,故2x=3y+x,整理得x=3y,聯(lián)立兩個(gè)方程即可.【詳解】根據(jù)圖示可得,故答案是:.【點(diǎn)睛】此題主要考查了由實(shí)際問題抽象出二元一次方程組,關(guān)鍵是看懂圖示,分別表示出長方形的長和寬.14、60π【解析】
圓錐的側(cè)面積=π×底面半徑×母線長,把相應(yīng)數(shù)值代入即可求解.解:圓錐的側(cè)面積=π×6×10=60πcm1.15、(3,0)【解析】
把交點(diǎn)坐標(biāo)代入拋物線解析式求m的值,再令y=0解一元二次方程求另一交點(diǎn)的橫坐標(biāo).【詳解】把點(diǎn)(1,0)代入拋物線y=x2-4x+中,得m=6,所以,原方程為y=x2-4x+3,令y=0,解方程x2-4x+3=0,得x1=1,x2=3∴拋物線與x軸的另一個(gè)交點(diǎn)的坐標(biāo)是(3,0).故答案為(3,0).【點(diǎn)睛】本題考查了點(diǎn)的坐標(biāo)與拋物線解析式的關(guān)系,拋物線與x軸交點(diǎn)坐標(biāo)的求法.本題也可以用根與系數(shù)關(guān)系直接求解.16、1【解析】
先由根與系數(shù)的關(guān)系求出m?n及m+n的值,再把化為的形式代入進(jìn)行計(jì)算即可.【詳解】∵m、n是一元二次方程x2+1x﹣1=0的兩實(shí)數(shù)根,∴m+n=﹣1,m?n=﹣1,∴===1.故答案為1.【點(diǎn)睛】本題考查的是根與系數(shù)的關(guān)系,將根與系數(shù)的關(guān)系與代數(shù)式變形相結(jié)合解題是一種經(jīng)常使用的解題方法.一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系為:x1+x2=﹣,x1?x2=.17、1【解析】
根據(jù)根與系數(shù)的關(guān)系得到m+n=﹣2018,mn=﹣1,把m2n+mm2﹣mn分解因式得到mn(m+n﹣1),然后利用整體代入的方法計(jì)算.【詳解】解:∵m、n是方程x2+2018x﹣1=0的兩個(gè)根,m+n=-2018,=﹣1×(﹣2018﹣1)=﹣1×(﹣1)=1,故答案為:1.【點(diǎn)睛】本題考查了根與系數(shù)的關(guān)系,如果一元二次方程ax2+bx+c=0的兩根分別為x1與x2,則三、解答題(共7小題,滿分69分)18、,1+【解析】
運(yùn)用公式化簡,再代入求值.【詳解】原式===,當(dāng)x=+1時(shí),原式=.【點(diǎn)睛】考查分式的化簡求值、整式的化簡求值,解答本題的關(guān)鍵是明確它們各自的計(jì)算方法.19、(1)m≥﹣;(2)m=2.【解析】
(1)利用判別式的意義得到(2m+3)2﹣4(m2+2)≥1,然后解不等式即可;(2)根據(jù)題意x1+x2=2m+3,x1x2=m2+2,由條件得x12+x22=31+x1x2,再利用完全平方公式得(x1+x2)2﹣3x1x2﹣31=1,所以2m+3)2﹣3(m2+2)﹣31=1,然后解關(guān)于m的方程,最后利用m的范圍確定滿足條件的m的值.【詳解】(1)根據(jù)題意得(2m+3)2﹣4(m2+2)≥1,解得m≥﹣;(2)根據(jù)題意x1+x2=2m+3,x1x2=m2+2,因?yàn)閤1x2=m2+2>1,所以x12+x22=31+x1x2,即(x1+x2)2﹣3x1x2﹣31=1,所以(2m+3)2﹣3(m2+2)﹣31=1,整理得m2+12m﹣28=1,解得m1=﹣14,m2=2,而m≥﹣;所以m=2.【點(diǎn)睛】本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=1(a≠1)的兩根時(shí),.靈活應(yīng)用整體代入的方法計(jì)算.20、(1)詳見解析;(2)30.【解析】
(1)利用切線的性質(zhì)得∠CEO=90°,再證明△OCA≌△OCE得到∠CAO=∠CEO=90°,然后根據(jù)切線的判定定理得到結(jié)論;(2)利用四邊形FOBE是菱形得到OF=OB=BF=EF,則可判定△OBE為等邊三角形,所以∠BOE=60°,然后利用互余可確定∠D的度數(shù).【詳解】(1)證明:∵CD與⊙O相切于點(diǎn)E,∴OE⊥CD,∴∠CEO=90°,又∵OC∥BE,∴∠COE=∠OEB,∠OBE=∠COA∵OE=OB,∴∠OEB=∠OBE,∴∠COE=∠COA,又∵OC=OC,OA=OE,∴△OCA≌△OCE(SAS),∴∠CAO=∠CEO=90°,又∵AB為⊙O的直徑,∴AC為⊙O的切線;(2)∵四邊形FOBE是菱形,∴OF=OB=BF=EF,∴OE=OB=BE,∴△OBE為等邊三角形,∴∠BOE=60°,而OE⊥CD,∴∠D=30°.【點(diǎn)睛】本題考查了切線的判定與性質(zhì):經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線;圓的切線垂直于經(jīng)過切點(diǎn)的半徑.判定切線時(shí)“連圓心和直線與圓的公共點(diǎn)”或“過圓心作這條直線的垂線”;有切線時(shí),常常“遇到切點(diǎn)連圓心得半徑”.也考查了圓周角定理.21、(1)見解析(2)圖中陰影部分的面積為π.【解析】
(1)連接OC.只需證明∠OCD=90°.根據(jù)等腰三角形的性質(zhì)即可證明;(2)先根據(jù)直角三角形中30°的銳角所對(duì)的直角邊是斜邊的一半求出OD,然后根據(jù)勾股定理求出CD,則陰影部分的面積即為直角三角形OCD的面積減去扇形COB的面積.【詳解】(1)證明:連接OC.∵AC=CD,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC,∴∠2=∠A=30°.∴∠OCD=∠ACD-∠2=90°,即OC⊥CD,∴CD是⊙O的切線;(2)解:∠1=∠2+∠A=60
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 臨沂科技職業(yè)學(xué)院《精細(xì)化學(xué)工藝學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 遼河石油職業(yè)技術(shù)學(xué)院《糧油食品加工工藝學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 江西信息應(yīng)用職業(yè)技術(shù)學(xué)院《食品質(zhì)量與安全控制》2023-2024學(xué)年第一學(xué)期期末試卷
- 江蘇工程職業(yè)技術(shù)學(xué)院《女性文學(xué)鑒賞》2023-2024學(xué)年第一學(xué)期期末試卷
- 華東政法大學(xué)《健康教育》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖北黃岡應(yīng)急管理職業(yè)技術(shù)學(xué)院《外國文學(xué)專題》2023-2024學(xué)年第一學(xué)期期末試卷
- 遵義醫(yī)藥高等??茖W(xué)?!恫牧虾附有浴?023-2024學(xué)年第一學(xué)期期末試卷
- 珠海格力職業(yè)學(xué)院《外科學(xué)Ⅱ》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶青年職業(yè)技術(shù)學(xué)院《高等天然藥物化學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 中華女子學(xué)院《運(yùn)動(dòng)控制系統(tǒng)》2023-2024學(xué)年第一學(xué)期期末試卷
- 第二章 運(yùn)營管理戰(zhàn)略
- 《三本白皮書》全文內(nèi)容及應(yīng)知應(yīng)會(huì)知識(shí)點(diǎn)
- 專題14 思想方法專題:線段與角計(jì)算中的思想方法壓軸題四種模型全攻略(解析版)
- 醫(yī)院外來器械及植入物管理制度(4篇)
- 港口與港口工程概論
- 《念珠菌感染的治療》課件
- 門店裝修設(shè)計(jì)手冊
- 考研計(jì)算機(jī)學(xué)科專業(yè)基礎(chǔ)(408)研究生考試試卷與參考答案(2025年)
- 2024護(hù)理個(gè)人年終總結(jié)
- 海南省申論真題2020年(縣級(jí)及以上)
- 蛇年金蛇賀歲
評(píng)論
0/150
提交評(píng)論