版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年山東濰坊臨朐達(dá)標(biāo)名校中考數(shù)學(xué)模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,點A、B在數(shù)軸上表示的數(shù)的絕對值相等,且,那么點A表示的數(shù)是A. B. C. D.32.以坐標(biāo)原點為圓心,以2個單位為半徑畫⊙O,下面的點中,在⊙O上的是()A.(1,1) B.(,) C.(1,3) D.(1,)3.如果菱形的一邊長是8,那么它的周長是()A.16 B.32 C.163 D.3234.下列運(yùn)算不正確的是A.a(chǎn)5+C.2a25.把三角形按如圖所示的規(guī)律拼圖案,其中第①個圖案中有1個三角形,第②個圖案中有4個三角形,第③個圖案中有8個三角形,…,按此規(guī)律排列下去,則第⑦個圖案中三角形的個數(shù)為()A.15 B.17 C.19 D.246.某種超薄氣球表面的厚度約為,這個數(shù)用科學(xué)記數(shù)法表示為()A. B. C. D.7.拋物線經(jīng)過第一、三、四象限,則拋物線的頂點必在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.如圖,在中,,,,點在以斜邊為直徑的半圓上,點是的三等分點,當(dāng)點沿著半圓,從點運(yùn)動到點時,點運(yùn)動的路徑長為()A.或 B.或 C.或 D.或9.若二次函數(shù)的圖象經(jīng)過點(﹣1,0),則方程的解為()A., B., C., D.,10.如圖是由四個小正方體疊成的一個幾何體,它的左視圖是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,已知△ABC中,AB=AC=5,BC=8,將△ABC沿射線BC方向平移m個單位得到△DEF,頂點A,B,C分別與D,E,F(xiàn)對應(yīng),若以A,D,E為頂點的三角形是等腰三角形,且AE為腰,則m的值是______.12.如果一個扇形的弧長等于它的半徑,那么此扇形成為“等邊扇形”.則半徑為2的“等邊扇形”的面積為.13.如圖,在平面直角坐標(biāo)系中,點A(0,6),點B在x軸的負(fù)半軸上,將線段AB繞點A逆時針旋轉(zhuǎn)90°至AB',點M是線段AB'的中點,若反比例函數(shù)y=(k≠0)的圖象恰好經(jīng)過點B'、M,則k=_____.14.如圖,在△ABC中,∠C=90°,D是AC上一點,DE⊥AB于點E,若AC=8,BC=6,DE=3,則AD的長為________.15.將一副直角三角板如圖放置,使含30°角的三角板的短直角邊和含45°角的三角板的一條直角邊重合,則∠1的度數(shù)為__度.16.對于任意實數(shù)m、n,定義一種運(yùn)算m※n=mn﹣m﹣n+3,等式的右邊是通常的加減和乘法運(yùn)算,例如:3※5=3×5﹣3﹣5+3=1.請根據(jù)上述定義解決問題:若a<2※x<7,且解集中有兩個整數(shù)解,則a的取值范圍是_____.17.如圖,矩形ABCD中,AB=3,對角線AC,BD相交于點O,AE垂直平分OB于點E,則AD的長為____________.三、解答題(共7小題,滿分69分)18.(10分)19.(5分)如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P是直線AC下方拋物線上的動點.(1)求拋物線的解析式;(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當(dāng)四邊形AECP的面積最大時,求點P的坐標(biāo);(3)當(dāng)點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標(biāo),若不存在,請說明理由.20.(8分)如圖所示,內(nèi)接于圓O,于D;(1)如圖1,當(dāng)AB為直徑,求證:;(2)如圖2,當(dāng)AB為非直徑的弦,連接OB,則(1)的結(jié)論是否成立?若成立請證明,不成立說明由;(3)如圖3,在(2)的條件下,作于E,交CD于點F,連接ED,且,若,,求CF的長度.21.(10分)如圖,已知△ABC,請用尺規(guī)作圖,使得圓心到△ABC各邊距離相等(保留作圖痕跡,不寫作法).22.(10分)已知:關(guān)于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整數(shù)).(1)求證:方程有兩個不相等的實數(shù)根;(2)若方程的兩個實數(shù)根都是整數(shù),求k的值.23.(12分)如圖,已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,且與軸交于點;點在反比例函數(shù)的圖象上,以點為圓心,半徑為的作圓與軸,軸分別相切于點、.(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)請連結(jié),并求出的面積;(3)直接寫出當(dāng)時,的解集.24.(14分)如圖,△ABC中,D是AB上一點,DE⊥AC于點E,F(xiàn)是AD的中點,F(xiàn)G⊥BC于點G,與DE交于點H,若FG=AF,AG平分∠CAB,連接GE,GD.求證:△ECG≌△GHD;
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
如果點A,B表示的數(shù)的絕對值相等,那么AB的中點即為坐標(biāo)原點.【詳解】解:如圖,AB的中點即數(shù)軸的原點O.
根據(jù)數(shù)軸可以得到點A表示的數(shù)是.
故選:B.【點睛】此題考查了數(shù)軸有關(guān)內(nèi)容,用幾何方法借助數(shù)軸來求解,非常直觀,體現(xiàn)了數(shù)形結(jié)合的優(yōu)點確定數(shù)軸的原點是解決本題的關(guān)鍵.2、B【解析】
根據(jù)點到圓心的距離和半徑的數(shù)量關(guān)系即可判定點與圓的位置關(guān)系.【詳解】A選項,(1,1)到坐標(biāo)原點的距離為<2,因此點在圓內(nèi),B選項(,)到坐標(biāo)原點的距離為=2,因此點在圓上,C選項(1,3)到坐標(biāo)原點的距離為>2,因此點在圓外D選項(1,)到坐標(biāo)原點的距離為<2,因此點在圓內(nèi),故選B.【點睛】本題主要考查點與圓的位置關(guān)系,解決本題的關(guān)鍵是要熟練掌握點與圓的位置關(guān)系.3、B【解析】
根據(jù)菱形的四邊相等,可得周長【詳解】菱形的四邊相等∴菱形的周長=4×8=32故選B.【點睛】本題考查了菱形的性質(zhì),并靈活掌握及運(yùn)用菱形的性質(zhì)4、B【解析】(-2a5、D【解析】
由圖可知:第①個圖案有三角形1個,第②圖案有三角形1+3=4個,第③個圖案有三角形1+3+4=8個,第④個圖案有三角形1+3+4+4=12,…第n個圖案有三角形4(n﹣1)個(n>1時),由此得出規(guī)律解決問題.【詳解】解:解:∵第①個圖案有三角形1個,第②圖案有三角形1+3=4個,第③個圖案有三角形1+3+4=8個,…∴第n個圖案有三角形4(n﹣1)個(n>1時),則第⑦個圖中三角形的個數(shù)是4×(7﹣1)=24個,故選D.【點睛】本題考查了規(guī)律型:圖形的變化類,根據(jù)給定圖形中三角形的個數(shù),找出an=4(n﹣1)是解題的關(guān)鍵.6、A【解析】
絕對值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】,故選:A.【點睛】本題考查了用科學(xué)記數(shù)法表示較小的數(shù),一般形式為,其中,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.7、A【解析】
根據(jù)二次函數(shù)圖象所在的象限大致畫出圖形,由此即可得出結(jié)論.【詳解】∵二次函數(shù)圖象只經(jīng)過第一、三、四象限,∴拋物線的頂點在第一象限.故選A.【點睛】本題考查了二次函數(shù)的性質(zhì)以及二次函數(shù)的圖象,大致畫出函數(shù)圖象,利用數(shù)形結(jié)合解決問題是解題的關(guān)鍵.8、A【解析】
根據(jù)平行線的性質(zhì)及圓周角定理的推論得出點M的軌跡是以EF為直徑的半圓,進(jìn)而求出半徑即可得出答案,注意分兩種情況討論.【詳解】當(dāng)點D與B重合時,M與F重合,當(dāng)點D與A重合時,M與E重合,連接BD,F(xiàn)M,AD,EM,∵∴∵AB是直徑即∴∴點M的軌跡是以EF為直徑的半圓,∵∴以EF為直徑的圓的半徑為1∴點M運(yùn)動的路徑長為當(dāng)時,同理可得點M運(yùn)動的路徑長為故選:A.【點睛】本題主要考查動點的運(yùn)動軌跡,掌握圓周角定理的推論,平行線的性質(zhì)和弧長公式是解題的關(guān)鍵.9、C【解析】
∵二次函數(shù)的圖象經(jīng)過點(﹣1,0),∴方程一定有一個解為:x=﹣1,∵拋物線的對稱軸為:直線x=1,∴二次函數(shù)的圖象與x軸的另一個交點為:(3,0),∴方程的解為:,.故選C.考點:拋物線與x軸的交點.10、A【解析】試題分析:如圖是由四個小正方體疊成的一個幾何體,它的左視圖是.故選A.考點:簡單組合體的三視圖.二、填空題(共7小題,每小題3分,滿分21分)11、或5或1.【解析】
根據(jù)以點A,D,E為頂點的三角形是等腰三角形分類討論即可.【詳解】解:如圖(1)當(dāng)在△ADE中,DE=5,當(dāng)AD=DE=5時為等腰三角形,此時m=5.(2)又AC=5,當(dāng)平移m個單位使得E、C點重合,此時AE=ED=5,平移的長度m=BC=1,(3)可以AE、AD為腰使ADE為等腰三角形,設(shè)平移了m個單位:則AN=3,AC=,AD=m,得:,得m=,綜上所述:m為或5或1,所以答案:或5或1.【點睛】本題主要考查等腰三角形的性質(zhì),注意分類討論的完整性.12、1【解析】試題分析:根據(jù)題意可得圓心角的度數(shù)為:,則S==1.考點:扇形的面積計算.13、12【解析】
根據(jù)題意可以求得點B'的橫坐標(biāo),然后根據(jù)反比例函數(shù)y=(k≠0)的圖象恰好經(jīng)過點B'、M,從而可以求得k的值.【詳解】解:作B′C⊥y軸于點C,如圖所示,∵∠BAB′=90°,∠AOB=90°,AB=AB′,∴∠BAO+∠ABO=90°,∠BAO+∠B′AC=90°,∴∠ABO=∠BA′C,∴△ABO≌△BA′C,∴AO=B′C,∵點A(0,6),∴B′C=6,設(shè)點B′的坐標(biāo)為(6,),∵點M是線段AB'的中點,點A(0,6),∴點M的坐標(biāo)為(3,),∵反比例函數(shù)y=(k≠0)的圖象恰好經(jīng)過點M,∴=,解得,k=12,故答案為:12.【點睛】本題考查反比例函數(shù)圖象上點的坐標(biāo)特征、旋轉(zhuǎn)的性質(zhì),解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.14、1【解析】
如圖,由勾股定理可以先求出AB的值,再證明△AED∽△ACB,根據(jù)相似三角形的性質(zhì)就可以求出結(jié)論.【詳解】在Rt△ABC中,由勾股定理.得AB==10,∵DE⊥AB,∴∠AED=∠C=90°.∵∠A=∠A,∴△AED∽△ACB,∴,∴,∴AD=1.故答案為1【點睛】本題考查了勾股定理的運(yùn)用,相似三角形的判定及性質(zhì)的運(yùn)用,解答時求出△AED∽△ACB是解答本題的關(guān)鍵.15、1.【解析】
根據(jù)一副直角三角板的各個角的度數(shù),結(jié)合三角形內(nèi)角和定理,即可求解.【詳解】∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=1°.故答案為:1.【點睛】本題主要考查三角形的內(nèi)角和定理以及對頂角的性質(zhì),掌握三角形的內(nèi)角和等于180°,是解題的關(guān)鍵.16、【解析】
解:根據(jù)題意得:2※x=2x﹣2﹣x+3=x+1,∵a<x+1<7,即a﹣1<x<6解集中有兩個整數(shù)解,∴a的范圍為,故答案為.【點睛】本題考查一元一次不等式組的整數(shù)解,準(zhǔn)確理解題意正確計算是本題的解題關(guān)鍵.17、【解析】試題解析:∵四邊形ABCD是矩形,
∴OB=OD,OA=OC,AC=BD,
∴OA=OB,
∵AE垂直平分OB,
∴AB=AO,
∴OA=AB=OB=3,
∴BD=2OB=6,
∴AD=.【點睛】此題考查了矩形的性質(zhì)、等邊三角形的判定與性質(zhì)、線段垂直平分線的性質(zhì)、勾股定理;熟練掌握矩形的性質(zhì),證明三角形是等邊三角形是解決問題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、﹣2<x<2.【解析】
分別解不等式,進(jìn)而得出不等式組的解集.【詳解】解①得:x<2解②得:x>﹣2.故不等式組的解集為:﹣2<x<2.【點睛】本題主要考查了解一元一次不等式組,正確掌握不等式組的解法是解題的關(guān)鍵.19、(1)拋物線的解析式為y=x2-2x+1,(2)四邊形AECP的面積的最大值是,點P(,﹣);(3)Q(4,1)或(-3,1).【解析】
(1)把點A,B的坐標(biāo)代入拋物線的解析式中,求b,c;(2)設(shè)P(m,m2?2m+1),根據(jù)S四邊形AECP=S△AEC+S△APC,把S四邊形AECP用含m式子表示,根據(jù)二次函數(shù)的性質(zhì)求解;(3)設(shè)Q(t,1),分別求出點A,B,C,P的坐標(biāo),求出AB,BC,CA;用含t的式子表示出PQ,CQ,判斷出∠BAC=∠PCA=45°,則要分兩種情況討論,根據(jù)相似三角形的對應(yīng)邊成比例求t.【詳解】解:(1)將A(0,1),B(9,10)代入函數(shù)解析式得:×81+9b+c=10,c=1,解得b=?2,c=1,所以拋物線的解析式y(tǒng)=x2?2x+1;(2)∵AC∥x軸,A(0,1),∴x2?2x+1=1,解得x1=6,x2=0(舍),即C點坐標(biāo)為(6,1),∵點A(0,1),點B(9,10),∴直線AB的解析式為y=x+1,設(shè)P(m,m2?2m+1),∴E(m,m+1),∴PE=m+1?(m2?2m+1)=?m2+3m.∵AC⊥PE,AC=6,∴S四邊形AECP=S△AEC+S△APC=AC?EF+AC?PF=AC?(EF+PF)=AC?EP=×6(?m2+3m)=?m2+9m.∵0<m<6,∴當(dāng)m=時,四邊形AECP的面積最大值是,此時P();(3)∵y=x2?2x+1=(x?3)2?2,P(3,?2),PF=y(tǒng)F?yp=3,CF=xF?xC=3,∴PF=CF,∴∠PCF=45°,同理可得∠EAF=45°,∴∠PCF=∠EAF,∴在直線AC上存在滿足條件的點Q,設(shè)Q(t,1)且AB=,AC=6,CP=,∵以C,P,Q為頂點的三角形與△ABC相似,①當(dāng)△CPQ∽△ABC時,CQ:AC=CP:AB,(6?t):6=,解得t=4,所以Q(4,1);②當(dāng)△CQP∽△ABC時,CQ:AB=CP:AC,(6?t)6,解得t=?3,所以Q(?3,1).綜上所述:當(dāng)點P為拋物線的頂點時,在直線AC上存在點Q,使得以C,P,Q為頂點的三角形與△ABC相似,Q點的坐標(biāo)為(4,1)或(?3,1).【點睛】本題考查了二次函數(shù)綜合題,解(1)的關(guān)鍵是待定系數(shù)法;解(2)的關(guān)鍵是利用面積的和差得出二次函數(shù),又利用了二次函數(shù)的性質(zhì),平行于坐標(biāo)軸的直線上兩點間的距離是較大的坐標(biāo)減較小的坐標(biāo);解(3)的關(guān)鍵是利用相似三角形的性質(zhì)的出關(guān)于CQ的比例,要分類討論,以防遺漏.20、(1)見解析;(2)成立;(3)【解析】
(1)根據(jù)圓周角定理求出∠ACB=90°,求出∠ADC=90°,再根據(jù)三角形內(nèi)角和定理求出即可;(2)根據(jù)圓周角定理求出∠BOC=2∠A,求出∠OBC=90°-∠A和∠ACD=90°-∠A即可;(3)分別延長AE、CD交⊙O于H、K,連接HK、CH、AK,在AD上取DG=BD,延長CG交AK于M,延長KO交⊙O于N,連接CN、AN,求出關(guān)于a的方程,再求出a即可.【詳解】(1)證明:∵AB為直徑,∴,∵于D,∴,∴,,∴;(2)成立,證明:連接OC,由圓周角定理得:,∵,∴,∵,∴,∴;(3)分別延長AE、CD交⊙O于H、K,連接HK、CH、AK,∵,,∴,∴,,∵,∴,∵根據(jù)圓周角定理得:,∴,∴由三角形內(nèi)角和定理得:,∴,∴,同理,∵,∴,在AD上取,延長CG交AK于M,則,,∴,∴,延長KO交⊙O于N,連接CN、AN,則,∴,∵,∴,∴四邊形CGAN是平行四邊形,∴,作于T,則T為CK的中點,∵O為KN的中點,∴,∵,,∴由勾股定理得:,∴,作直徑HS,連接KS,∵,,∴由勾股定理得:,∴,∴,設(shè),,∴,,∵,∴,解得:,∴,∴.【點睛】本題考查了垂徑定理、解直角三角形、等腰三角形的性質(zhì)、圓周角定理、勾股定理等知識點,能綜合運(yùn)用知識點進(jìn)行推理是解此題的關(guān)鍵,綜合性比較強(qiáng),難度偏大.21、見解析【解析】
分別作∠ABC和∠ACB的平分線,它們的交點O滿足條件.【詳解】解:如圖,點O為所作.【點睛】本題考查了基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).22、(3)證明見解析(3)3或﹣3【解析】
(3)根據(jù)一元二次方程的定義得k≠2,再計算判別式得到△=(3k-3)3,然后根據(jù)非負(fù)數(shù)的性質(zhì),即k的取值得到△>2,則可根據(jù)判別式的意義得到結(jié)論;(3)根據(jù)求根公式求出方程的根,方程的兩個實數(shù)根都是整數(shù),求出k的值.【詳解】證明:(3)△=[﹣(4k+3)]3﹣4k(3k+3)=(3k﹣3)3.∵k為整數(shù),∴(3k﹣3)3>2,即△>2.∴方程有兩個不相等的實數(shù)根.(3)解:∵方程kx3﹣(4k+3)x+3k+3=2為一元二次方程,∴k≠2.∵kx3﹣(4k+3)x+3k+3=2,即[kx﹣(k+3)](x﹣3)=2,∴x3=3,.∵方程的兩個實數(shù)根都是整數(shù),且k為整數(shù),∴k=3或﹣3.【點睛】本題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度商業(yè)地產(chǎn)項目委托市場調(diào)研與估價合同3篇
- 2024年汽車租賃公司駕駛員車輛租賃保險與賠償合同3篇
- 2024版抵押反擔(dān)保合同擔(dān)保責(zé)任界定標(biāo)準(zhǔn)3篇
- 2024年高空作業(yè)吊籃租賃與作業(yè)現(xiàn)場安全管理與培訓(xùn)服務(wù)合同3篇
- 2024年度廣州國際生物島研發(fā)與產(chǎn)業(yè)化基地建設(shè)合同3篇
- 2024版數(shù)字經(jīng)濟(jì)園區(qū)招商引資合作意向合同3篇
- 2024版浮雕彩繪裝飾工程合同范本匯編12篇
- 2024版新能源汽車充電站分包合同交底與運(yùn)營管理3篇
- 2024年度惠州二手房產(chǎn)買賣合同3篇
- 2024版XX污水廠節(jié)能改造技術(shù)服務(wù)合同范本2篇
- 數(shù)字化推動下的小學(xué)語文智慧課堂教學(xué)策略
- 異物取出術(shù)知情同意書
- 中國風(fēng)水墨花景演講PPT模板
- 醫(yī)院職工停薪留職申請書2篇
- 腳手架搭設(shè)與使用風(fēng)險分析及管控措施
- 經(jīng)纖維支氣管鏡氣管插管
- 初中英語常考改錯練習(xí)題(共十八類100題附參考答案-解析)
- 爐膛熱力計算
- 深圳高鐵總部項目遴選方案
- AQ-C1-19 安全教育記錄表(三級)
- 五年級閱讀指導(dǎo)課(課堂PPT)
評論
0/150
提交評論