版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
······線······○······封······○······密······○······內(nèi)······○······號學 ······線······○······封······○······密······○······內(nèi)······○······號學 級年 名姓······線······○······封······○······密······○······外······○······考試時間:90分鐘;命題人:數(shù)學教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題35分)一、單選題(5小題,每小題3分,共計15分)1、如圖:∠B=∠C=90°,E是BC的中點,DE平分∠ADC,則下列說法正確的有幾個(
)(1)AE平分∠DAB;(2)△EBA≌△DCE;(3)AB+CD=AD;
(4)AE⊥DE.(5)DE=AEA.2個 B.3個 C.4個 D.52、如圖所示,直線a∥b,∠1=35°,∠2=90°,則∠3的度數(shù)為()A.125° B.135° C.145° D.155°3、如圖,三角形紙片ABC,AB=AC,∠BAC=90°,點E為AB中點,沿過點E的直線折疊,使點B與點A重合,折痕現(xiàn)交于點F,已知EF=,則BC的長是()A. B.3 C.3 D.34、下列圖形為正多邊形的是()A. B. C. D.5、如圖,AE是△ABC的中線,D是BE上一點,若EC=6,DE=2,則BD的長為(
)A.4 B.3 C.2 D.1二、多選題(5小題,每小題4分,共計20分)1、如圖,已知于點D,現(xiàn)有四個條件:①;②;③;④.那么能得出的條件是(
)A.①③ B.②④ C.①④ D.②③······線······○······封······○······密······○······內(nèi)······○······號學 ······線······○······封······○······密······○······內(nèi)······○······號學 級年 名姓······線······○······封······○······密······○······外······○······A., B.,C., D.,3、一幅美麗的圖案,在其頂點處由四個正多邊形鑲嵌而成,其中三個分別為正三角形、正四邊形、正六邊形,則另一個不能為(
)A.正六邊形 B.正五邊形 C.正四邊形 D.正三角形4、如圖,,,要添加一個條件使.添加的條件可以是(
)A. B. C. D.5、如圖,AD是的中線,E,F(xiàn)分別是AD和AD延長線上的點,且,連結(jié)BF,CE.下列說法中正確的有()A.CE=BF; B.△ABD和△ACD面積相等; C.BF∥CE; D.△BDF≌△CDE第Ⅱ卷(非選擇題65分)三、填空題(5小題,每小題5分,共計25分)1、如圖所示,過正五邊形的頂點作一條射線與其內(nèi)角的角平分線相交于點,且,則_____度.2、如圖所示,AD是△ABC中BC邊上的中線,若AB=2,AC=6,則AD的取值范圍是__________3、如圖,△ABC中,AB=AC,D、E分別在CA、BA的延長線上,連接BD、CE,且∠D+∠E=180°,若BD=6,則CE的長為__.······線······○······封······○······密······○······內(nèi)······○······號學 ······線······○······封······○······密······○······內(nèi)······○······號學 級年 名姓······線······○······封······○······密······○······外······○······4、如圖,是一個中心對稱圖形,A為對稱中心,若,則________,________.5、如圖所示,在中,D是的中點,點A、F、D、E在同一直線上.請?zhí)砑右粋€條件,使(不再添其他線段,不再標注或使用其他字母),并給出證明.你添加的條件是______四、解答題(5小題,每小題8分,共計40分)1、如圖,在△ABC中,AB=BC,∠ABC=60°,線段AC與AD關(guān)于直線AP對稱,E是線段BD與直線AP的交點.(1)若∠DAE=15°,求證:△ABD是等腰直角三角形;(2)連CE,求證:BE=AE+CE.2、在中,,直線經(jīng)過點C,且于D,于E,(1)當直線繞點C旋轉(zhuǎn)到圖1的位置時,顯然有:(不必證明);(2)當直線繞點C旋轉(zhuǎn)到圖2的位置時,求證:;(3)當直線MN繞點C旋轉(zhuǎn)到圖3的位置時,試問、、具有怎樣的等量關(guān)系?請直接寫出這個等量關(guān)系.3、如圖,在中,點D為上一點,將沿翻折得到,與相交于點F,若平分,,.(1)求證:;(2)求的度數(shù).······線······○······封······○······密······○······內(nèi)······○······號學 級年 名姓······線······○······封······○······密······○······外······○······4、如圖,點A,F(xiàn),E,D在一條直線上,AF=······線······○······封······○······密······○······內(nèi)······○······號學 級年 名姓······線······○······封······○······密······○······外······○······5、已知如圖,△ABC中,AB=AC,D、E分別是AC、AB上的點,M、N分別是CE、BD上的點,若MA⊥CE,AN⊥BD,AM=AN.求證:EM=DN.-參考答案-一、單選題1、B【解析】【分析】過點E作EF⊥AD垂足為點F,證明△DEF≌△DEC(AAS);得出CE=EF,DC=DF,∠CED=∠FED,證明Rt△AFE≌Rt△ABE(HL);得出AF=AB,∠FAE=∠BAE,∠AEF=∠AEB,即可得出答案.【詳解】解:如圖,過點E作EF⊥AD,垂足為點F,可得∠DFE=90°,則∠DFE=∠C,∵DE平分∠ADC,∴∠FDE=∠CDE,在△DCE和△DFE中,,∴△DEF≌△DEC(AAS);∴CE=EF,DC=DF,∠CED=∠FED,∵E是BC的中點,∴CE=EB,∴EF=EB,在Rt△ABE和Rt△AFE中,,∴Rt△AFE≌Rt△ABE(HL);∴AF=AB,∠FAE=∠BAE,∠AEF=∠AEB,∴AE平分∠DAB,故結(jié)論(1)正確,則AD=AF+DF=AB+CD,故結(jié)論(3)正確;······線······○······封······○······密······○······內(nèi)······○······號學 級年 名姓······線······○······封······○······密······○······外······○······可得∠AED=∠FED+······線······○······封······○······密······○······內(nèi)······○······號學 級年 名姓······線······○······封······○······密······○······外······○······∵AB≠CD,AE≠DE,(5)錯誤,∴△EBA≌△DCE不可能成立,故結(jié)論(2)錯誤.綜上所知正確的結(jié)論有3個.故答案為:B.【考點】本題考查全等三角形的判定與性質(zhì)、平行線的判定等內(nèi)容,作出輔助線是解題的關(guān)鍵.2、A【解析】【詳解】分析:如圖求出∠5即可解決問題.詳解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°-∠5=125°,故選A.點睛:本題考查平行線的性質(zhì)、三角形內(nèi)角和定理,鄰補角的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學知識解決問題.3、B【解析】【分析】折疊的性質(zhì)主要有:1.重疊部分全等;2.折痕是對稱軸,對稱點的連線被對稱軸垂直平分.由折疊的性質(zhì)可知,所以可求出∠AFB=90°,再直角三角形的性質(zhì)可知,所以,的長可求,再利用勾股定理即可求出BC的長.【詳解】解:AB=AC,,故選B.【考點】······線······○······封······○······密······○······內(nèi)······○······號學 ······線······○······封······○······密······○······內(nèi)······○······號學 級年 名姓······線······○······封······○······密······○······外······○······4、D【解析】【分析】根據(jù)正多邊形的定義:各個角都相等,各條邊都相等的多邊形叫做正多邊形可得答案.【詳解】根據(jù)正多邊形的定義,得到D中圖形是正五邊形.故選D.【考點】本題考查了正多邊形,關(guān)鍵是掌握正多邊形的定義.5、A【解析】【分析】根據(jù)三角形中線定義得BE=EC=6,再由BD=BE-DE求解即可.【詳解】解:∵AE是△ABC的中線,EC=6,∴BE=EC=6,∵DE=2,∴BD=BE﹣DE=6﹣2=4,故選:A.【考點】本題考查了三角形的中線,熟知三角形的中線定義是解答的關(guān)鍵.二、多選題1、ABC【解析】【分析】根據(jù)全等三角形的判定方法,即可求解.【詳解】解:∵,∴,A、若,,可用角角邊證得,故本選項符合題意;B、若,,可用角角邊證得,故本選項符合題意;C、若,,可用邊角邊證得,故本選項符合題意;D、若,,是角角角,不能證得,故本選項不符合題意;故選:ABC.【考點】本題主要考查了全等三角形的判定,熟練掌握全等三角形的判定方法——邊角邊、角邊角、邊邊邊是解題的關(guān)鍵.2、ABC【解析】【分析】根據(jù)全等三角形的判定方法一一判斷即可.【詳解】解:A.由,,,根據(jù)可以證明,本選項符合題意;B.由,,根據(jù)能判斷三角形全等,本選項符合題意;······線······○······封······○······密······○······內(nèi)······○······號學 級年 名姓·······線······○······封······○······密······○······內(nèi)······○······號學 級年 名姓······線······○······封······○······密······○······外······○······D.由,,,根據(jù)不可以證明,本選項不符合題意;故選:.【考點】本題考查全等三角形的判定和性質(zhì),等腰三角形的性質(zhì)等知識,熟練掌握全等三角形的判定方法是解題的關(guān)鍵.3、ABD【解析】【分析】平面鑲嵌要求多邊形在同一個頂點處的所有角的和為根據(jù)平面鑲嵌的要求逐一求解各選項涉及的多邊形在一個頂點處的所有的角之和,從而可得答案.【詳解】解:一幅美麗的圖案,在其頂點處由四個正多邊形鑲嵌而成,其中三個分別為正三角形、正四邊形、正六邊形,在頂點處的四個角的和為:而正三角形、正四邊形、正六邊形的每一個內(nèi)角依次為:當?shù)谒膫€多邊形為正六邊形時,故符合題意;當?shù)谒膫€多邊形為正五邊形時,故符合題意;當?shù)谒膫€多邊形為正四邊形時,故不符合題意;當?shù)谒膫€多邊形為正三角形時,故符合題意;故選:【考點】本題考查的是平面鑲嵌,熟悉平面鑲嵌時,圍繞在一個頂點處的所有的角組成一個周角是解題的關(guān)鍵.4、BD【解析】【分析】已知一邊和一角對應(yīng)相等,再添加任意對對應(yīng)角相等,或已知角的另一邊相等就可以由AAS、ASA或SAS判定兩個三角形全等.【詳解】解:選項A中與不是對應(yīng)角,不能與已知構(gòu)成AAS或ASA的判定,無法判定三角形全等,故選項A不合題意;選項B中是對應(yīng)角,結(jié)合已知可以由AAS判定,故選項B符合題意;選項C中是對應(yīng)邊,但不是兩邊及其夾角相等,無法判定,故選項C不合題意;選項B中由已知可得,是對應(yīng)角,結(jié)合已知可以由ASA判定,故選項D符合題意;故選BD.【考點】本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:、、、、.注意:、不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.5、ABCD【解析】【分析】根據(jù)題意,結(jié)合已知條件與全等的判定方法對選項一一進行分析論證,排除錯誤答案.······線······○······封······○······密······○······內(nèi)······○······號學 ······線······○······封······○······密······○······內(nèi)······○······號學 級年 名姓······線······○······封······○······密······○······外······○······是的中線,,又,,,故D選項正確.∴,故A選項正確;BF∥CE;故C選項正確.是的中線,和等底等高,和面積相等,故B選項正確;故選:ABCD.【考點】本題考查三角形全等的判定方法和全等三角形的性質(zhì),判定兩個三角形全等的一般方法有:SSS、SAS、SSA、HL.三、填空題1、66【解析】【分析】首先根據(jù)正五邊形的性質(zhì)得到度,然后根據(jù)角平分線的定義得到度,再利用三角形內(nèi)角和定理得到的度數(shù).【詳解】解:∵五邊形為正五邊形,∴度,∵是的角平分線,∴度,∵,∴.故答案為66.【考點】本題考查了多邊形內(nèi)角與外角,題目中還用到了角平分線的定義及三角形內(nèi)角和定理.2、2<AD<4【解析】【分析】此題要倍長中線,再連接,構(gòu)造全等三角形.根據(jù)三角形的三邊關(guān)系:任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.即可求解.【詳解】解:延長AD到E,使AD=DE,連接BE,∵AD是△ABC的中線,∴BD=CD,在△ADC與△EDB中,······線······○······封······○······密······○······內(nèi)······○······號學 ······線······○······封······○······密······○······內(nèi)······○······號學 級年 名姓······線······○······封······○······密······○······外······○······∴△ADC≌△EDB(SAS),∴EB=AC,根據(jù)三角形的三邊關(guān)系定理:6-2<AE<6+2,∴2<AD<4,故AD的取值范圍為2<AD<4.【考點】本題主要考查對全等三角形的性質(zhì)和判定,三角形的三邊關(guān)系定理等知識點的理解和掌握,能推出6-2<AE<6+2是解此題的關(guān)鍵.3、6【解析】【分析】在AD上截取AF=AE,連接BF,易得△ABF≌△ACE,根據(jù)全等三角形的性質(zhì)可得∠BFA=∠E,CE=BF,則有∠D=∠DFB,然后根據(jù)等腰三角形的性質(zhì)可求解.【詳解】解:在AD上截取AF=AE,連接BF,如圖所示:AB=AC,∠FAB=∠EAC,,BF=EC,∠BFA=∠E,∠D+∠E=180°,∠BFA+∠DFB=180°,∠DFB=∠D,BF=BD,BD=6,CE=6.故答案為6.【考點】本題主要考查全等三角形的性質(zhì)與判定及等腰三角形的性質(zhì)與判定,熟練掌握全等三角形的判定方法及等腰三角形的性質(zhì)與判定是解題的關(guān)鍵.4、
30°
2【解析】【分析】根據(jù)中心對稱圖形的性質(zhì),得到,再由全等三角形的性質(zhì)解題即可.【詳解】解:∵A為對稱中心,∴繞點A旋轉(zhuǎn)能與重合,∴,∴,,∴.【考點】本題考查中心對稱圖形的性質(zhì)、全等三角形的性質(zhì)等知識,是基礎(chǔ)考點,掌握相關(guān)知識是解題關(guān)鍵.5、ED=FD(答案不唯一,∠E=∠CFD或∠DBE=∠DCF)······線······○······封······○······密······○······內(nèi)······○······號學 ······線······○······封······○······密······○······內(nèi)······○······號學 級年 名姓······線······○······封······○······密······○······外······○······【分析】根據(jù)三角形全等的判定方法SAS或AAS或ASA定理添加條件,然后證明即可.【詳解】解:∵D是的中點,∴BD=DC①若添加ED=FD在△BDE和△CDF中,,∴△BDE≌△CDF(SAS);②若添加∠E=∠CFD在△BDE和△CDF中,,∴△BDE≌△CDF(AAS);③若添加∠DBE=∠DCF在△BDE和△CDF中,,∴△BDE≌△CDF(ASA);故答案為:ED=FD(答案不唯一,∠E=∠CFD或∠DBE=∠DCF).【考點】本題考查了全等三角形的判定,熟練掌握三角形全等的判定方法是解題的關(guān)鍵.四、解答題1、(1)見解析;(2)見解析【解析】【分析】(1)首先根據(jù)題意確定出△ABC是等邊三角形,然后根據(jù)等邊三角形的性質(zhì)推出∠BAC=60°,再根據(jù)線段AC與AD關(guān)于直線AP對稱,以及∠DAE=15°,推出∠BAD=90°,即可得出結(jié)論;(2)利用“截長補短”的方法在BE上取點F,使BF=CE,連接AF,根據(jù)題目條件推出△ABF≌△ACE,得出AF=AE,再進一步推出∠AEF=60°,可得到△AFE是等邊三角形,則得到AF=FE,從而推出結(jié)論即可.【詳解】證明:(1)∵在△ABC中,AB=BC,∠ABC=60°,∴△ABC是等邊三角形,∴AC=AB=BC,∠BAC=∠ABC=∠ACB=60°,∵線段AC與AD關(guān)于直線AP對稱,∴∠CAE=∠DAE=15°,AD=AC,∴∠BAE=∠BAC+∠CAE=75°,∴∠BAD=90°,∵AB=AC=AD,∴△ABD是等腰直角三角形;(2)在BE上取點F,使BF=CE,連接AF,······線······○······封······○······密······○······內(nèi)······○······號學 ······線······○······封······○······密······○······內(nèi)······○······號學 級年 名姓······線······○······封······○······密······○······外······○······∵線段AC與AD關(guān)于直線AP對稱,∴∠ACE=∠ADE,AD=AC,∵AD=AC=AB,∴∠ADB=∠ABD=∠ACE,在△ABF與△ACE中,∴△ABF≌△ACE(SAS),∴AF=AE,∵AD=AB,∴∠D=∠ABD,又∠CAE=∠DAE,∴,∴在△AFE中,AF=AE,∠AEF=60°,∴△AFE是等邊三角形,∴AF=FE,∴BE=BF+FE=CE+AE.【考點】本題考查全等三角形的判定與性質(zhì),以及等邊三角形的判定與性質(zhì)等,掌握等邊三角形的判定與性質(zhì),以及全等三角形的常見輔助線的構(gòu)造方法是解題關(guān)鍵.2、(1)見解析;(2)見解析;(3)DE=BE-AD【解析】【分析】(1)由于△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E,由此即可證明△ADC≌△CEB,然后利用全等三角形的性質(zhì)即可解決問題;(2)由于△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E,由此仍然可以證明△ADC≌△CEB,然后利用全等三角形的性質(zhì)也可以解決問題;(3)當直線MN繞點C旋轉(zhuǎn)到圖(3)的位置時,仍然△ADC≌△CEB,然后利用全等三角形的性質(zhì)可以得到DE=BE-AD.【詳解】解:(1)∵△ABC中,∠ACB=90°,∴∠ACD+∠BCE=90°,又直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°∴∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),······線······○······封······○······密······○······內(nèi)······○······號學 級年 ······線······○······封······○······密······○······內(nèi)······○······號學 級年 名姓······線······○······封······○······密······○······外······○······∴DE=CD+CE=AD+BE;(2)∵△ABC中,∠ACB=90°,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠ACD+∠BCE=∠BCE+∠CBE=90°,而AC=BC,∴△ADC≌△CEB,∴CD=BE,CE=AD,∴DE=CE-CD=AD-BE;(3)如圖3,∵△ABC中,∠ACB=90°,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 市政道路竣工驗收質(zhì)量評估報告-定稿
- 自動變速器維修試題及答案2
- 微懸浮法糊樹脂新建項目可行性研究報告建議書申請格式范文
- 中國改善睡眠保健品行業(yè)全景評估及投資規(guī)劃建議報告
- 2024-2030年航空運輸行業(yè)投資機會及風險投資運作模式研究報告
- 四年級數(shù)學(四則混合運算)計算題專項練習與答案匯編
- 頭腦風暴讓好點子發(fā)光企業(yè)培訓課程
- 二零二五年度抵債協(xié)議:債權(quán)債務(wù)轉(zhuǎn)移與資產(chǎn)轉(zhuǎn)讓合同3篇
- 二零二五年度個人收入證明出具與高端人才引進合同3篇
- 銀行年終總結(jié)匯報
- 智能船舶與海洋工程:物聯(lián)網(wǎng)在船舶與海洋工程中的應(yīng)用
- 高速服務(wù)區(qū)經(jīng)營分析報告
- 浙江省湖州市2022-2023學年四年級上學期數(shù)學期末試卷(含答案)
- 現(xiàn)場工藝紀律檢查表
- 建井施工方案
- YMO青少年數(shù)學思維28屆五年級全國總決賽試卷
- 個人業(yè)績相關(guān)信息采集表
- 過敏性紫癜課件PPT
- 大學生暑期社會實踐證明模板(20篇)
- 自來水維修員年度工作總結(jié)
- ASTMB117-2023年鹽霧試驗標準中文
評論
0/150
提交評論