版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年廣東省揭陽揭西縣聯(lián)考中考押題數(shù)學預測卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.現(xiàn)有三張背面完全相同的卡片,正面分別標有數(shù)字﹣1,﹣2,3,把卡片背面朝上洗勻,然后從中隨機抽取兩張,則這兩張卡片正面數(shù)字之和為正數(shù)的概率是()A. B. C. D.2.在下列四個新能源汽車車標的設計圖中,屬于中心對稱圖形的是()A. B. C. D.3.下面的幾何體中,主(正)視圖為三角形的是()A. B. C. D.4.下列圖案中,既是中心對稱圖形,又是軸對稱圖形的是()A. B. C. D.5.已知矩形ABCD中,AB=3,BC=4,E為BC的中點,以點B為圓心,BA的長為半徑畫圓,交BC于點F,再以點C為圓心,CE的長為半徑畫圓,交CD于點G,則S1-S2=()A.6 B. C.12﹣π D.12﹣π6.已知如圖,△ABC為直角三角形,∠C=90°,若沿圖中虛線剪去∠C,則∠1+∠2等于()A.315° B.270° C.180° D.135°7.據(jù)史料記載,雎水太平橋建于清嘉慶年間,已有200余年歷史.橋身為一巨型單孔圓弧,既沒有用鋼筋,也沒有用水泥,全部由石塊砌成,猶如一道彩虹橫臥河面上,橋拱半徑OC為13m,河面寬AB為24m,則橋高CD為()A.15m B.17m C.18m D.20m8.如圖,在正方形ABCD中,AB=,P為對角線AC上的動點,PQ⊥AC交折線A﹣D﹣C于點Q,設AP=x,△APQ的面積為y,則y與x的函數(shù)圖象正確的是()A. B.C. D.9.若實數(shù)a,b滿足|a|>|b|,則與實數(shù)a,b對應的點在數(shù)軸上的位置可以是()A. B. C. D.10.在Rt△ABC中,∠C=90°,如果AC=2,cosA=,那么AB的長是()A.3 B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.等腰梯形是__________對稱圖形.12.已知a、b是方程x2﹣2x﹣1=0的兩個根,則a2﹣a+b的值是_______.13.已知拋物線與直線在之間有且只有一個公共點,則的取值范圍是__.14.方程的根是________.15.如圖,直徑為1000mm的圓柱形水管有積水(陰影部分),水面的寬度AB為800mm,則水的最大深度CD是______mm.16.關于的一元二次方程有兩個相等的實數(shù)根,則________.17.若正n邊形的內角為,則邊數(shù)n為_____________.三、解答題(共7小題,滿分69分)18.(10分)如圖,拋物線經過點A(﹣2,0),點B(0,4).(1)求這條拋物線的表達式;(2)P是拋物線對稱軸上的點,聯(lián)結AB、PB,如果∠PBO=∠BAO,求點P的坐標;(3)將拋物線沿y軸向下平移m個單位,所得新拋物線與y軸交于點D,過點D作DE∥x軸交新拋物線于點E,射線EO交新拋物線于點F,如果EO=2OF,求m的值.19.(5分)化簡:(x+7)(x-6)-(x-2)(x+1)20.(8分)小強想知道湖中兩個小亭A、B之間的距離,他在與小亭A、B位于同一水平面且東西走向的湖邊小道I上某一觀測點M處,測得亭A在點M的北偏東30°,亭B在點M的北偏東60°,當小明由點M沿小道I向東走60米時,到達點N處,此時測得亭A恰好位于點N的正北方向,繼續(xù)向東走30米時到達點Q處,此時亭B恰好位于點Q的正北方向,根據(jù)以上測量數(shù)據(jù),請你幫助小強計算湖中兩個小亭A、B之間的距離.21.(10分)如圖,已知A是⊙O上一點,半徑OC的延長線與過點A的直線交于點B,OC=BC,AC=OB.求證:AB是⊙O的切線;若∠ACD=45°,OC=2,求弦CD的長.22.(10分)已知:二次函數(shù)圖象的頂點坐標是(3,5),且拋物線經過點A(1,3).求此拋物線的表達式;如果點A關于該拋物線對稱軸的對稱點是B點,且拋物線與y軸的交點是C點,求△ABC的面積.23.(12分)如圖,已知平行四邊形ABCD,點M、N分別是邊DC、BC的中點,設=,=,求向量關于、的分解式.24.(14分)進入防汛期后,某地對河堤進行了加固.該地駐軍在河堤加固的工程中出色完成了任務.這是記者與駐軍工程指揮官的一段對話:通過這段對話,請你求出該地駐軍原來每天加固的米數(shù).
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
先找出全部兩張卡片正面數(shù)字之和情況的總數(shù),再先找出全部兩張卡片正面數(shù)字之和為正數(shù)情況的總數(shù),兩者的比值即為所求概率.【詳解】任取兩張卡片,數(shù)字之和一共有﹣3、2、1三種情況,其中和為正數(shù)的有2、1兩種情況,所以這兩張卡片正面數(shù)字之和為正數(shù)的概率是.故選D.【點睛】本題主要考查概率的求法,熟練掌握概率的求法是解題的關鍵.2、D【解析】
根據(jù)中心對稱圖形的概念求解.【詳解】解:A.不是中心對稱圖形,本選項錯誤;B.不是中心對稱圖形,本選項錯誤;C.不是中心對稱圖形,本選項錯誤;D.是中心對稱圖形,本選項正確.故選D.【點睛】本題主要考查了中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.3、C【解析】
解:圓柱的主視圖是矩形,正方體的主視圖是正方形,圓錐的主視圖是三角形,三棱柱的主視圖是寬相等兩個相連的矩形.故選C.4、B【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念解答.【詳解】A.不是軸對稱圖形,是中心對稱圖形;B.是軸對稱圖形,是中心對稱圖形;C.不是軸對稱圖形,也不是中心對稱圖形;D.是軸對稱圖形,不是中心對稱圖形.故選B.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.5、D【解析】
根據(jù)題意可得到CE=2,然后根據(jù)S1﹣S2=S矩形ABCD-S扇形ABF-S扇形GCE,即可得到答案【詳解】解:∵BC=4,E為BC的中點,∴CE=2,∴S1﹣S2=3×4﹣,故選D.【點睛】此題考查扇形面積的計算,矩形的性質及面積的計算.6、B【解析】
利用三角形內角與外角的關系:三角形的任一外角等于和它不相鄰的兩個內角之和解答.【詳解】如圖,∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=2∠C+(∠3+∠4),∵∠3+∠4=180°-∠C=90°,∴∠1+∠2=2×90°+90°=270°.故選B.【點睛】此題主要考查了三角形內角與外角的關系:三角形的任一外角等于和它不相鄰的兩個內角之和.7、C【解析】連結OA,如圖所示:
∵CD⊥AB,
∴AD=BD=AB=12m.在Rt△OAD中,OA=13,OD=,所以CD=OC+OD=13+5=18m.故選C.8、B【解析】∵在正方形ABCD中,AB=,∴AC=4,AD=DC=,∠DAP=∠DCA=45o,當點Q在AD上時,PA=PQ,∴DP=AP=x,∴S=;當點Q在DC上時,PC=PQCP=4-x,∴S=;所以該函數(shù)圖象前半部分是拋物線開口向上,后半部分也為拋物線開口向下,故選B.【點睛】本題考查動點問題的函數(shù)圖象,有一定難度,解題關鍵是注意點Q在AP、DC上這兩種情況.9、D【解析】
根據(jù)絕對值的意義即可解答.【詳解】由|a|>|b|,得a與原點的距離比b與原點的距離遠,只有選項D符合,故選D.【點睛】本題考查了實數(shù)與數(shù)軸,熟練運用絕對值的意義是解題關鍵.10、A【解析】根據(jù)銳角三角函數(shù)的性質,可知cosA==,然后根據(jù)AC=2,解方程可求得AB=3.故選A.點睛:此題主要考查了解直角三角形,解題關鍵是明確直角三角形中,余弦值cosA=,然后帶入數(shù)值即可求解.二、填空題(共7小題,每小題3分,滿分21分)11、軸【解析】
根據(jù)軸對稱圖形的概念,等腰梯形是軸對稱圖形,且有1條對稱軸,即底邊的垂直平分線.【詳解】畫圖如下:結合圖形,根據(jù)軸對稱的定義及等腰梯形的特征可知,等腰梯形是軸對稱圖形.故答案為:軸【點睛】本題考查了關于軸對稱的定義,運用定義會進行判斷一個圖形是不是軸對稱圖形.12、1【解析】
根據(jù)一元二次方程的解及根與系數(shù)的關系,可得出a2-2a=1、a+b=2,將其代入a2-a+b中即可求出結論.【詳解】∵a、b是方程x2-2x-1=0的兩個根,∴a2-2a=1,a+b=2,∴a2-a+b=a2-2a+(a+b)=1+2=1.故答案為1.【點睛】本題考查根與系數(shù)的關系以及一元二次方程的解,牢記兩根之和等于-、兩根之積等于是解題的關鍵.13、或.【解析】
聯(lián)立方程可得,設,從而得出的圖象在上與x軸只有一個交點,當△時,求出此時m的值;當△時,要使在之間有且只有一個公共點,則當x=-2時和x=2時y的值異號,從而求出m的取值范圍;【詳解】聯(lián)立可得:,令,拋物線與直線在之間有且只有一個公共點,即的圖象在上與x軸只有一個交點,當△時,即△解得:,當時,當時,,滿足題意,當△時,令,,令,,,令代入解得:,此方程的另外一個根為:,故也滿足題意,故的取值范圍為:或故答案為:或.【點睛】此題考查的是根據(jù)二次函數(shù)與一次函數(shù)的交點問題,求函數(shù)中參數(shù)的取值范圍,掌握把函數(shù)的交點問題轉化為一元二次方程解的問題是解決此題的關鍵.14、x=2【解析】分析:解此方程首先要把它化為我們熟悉的方程(一元二次方程),解新方程,檢驗是否符合題意,即可求得原方程的解.詳解:據(jù)題意得:2+2x=x2,∴x2﹣2x﹣2=0,∴(x﹣2)(x+1)=0,∴x1=2,x2=﹣1.∵≥0,∴x=2.故答案為:2.點睛:本題考查了學生綜合應用能力,解方程時要注意解題方法的選擇,在求值時要注意解的檢驗.15、200【解析】
先求出OA的長,再由垂徑定理求出AC的長,根據(jù)勾股定理求出OC的長,進而可得出結論.【詳解】解:∵⊙O的直徑為1000mm,
∴OA=OA=500mm.
∵OD⊥AB,AB=800mm,
∴AC=400mm,
∴OC===300mm,∴CD=OD-OC=500-300=200(mm).
答:水的最大深度為200mm.故答案為:200【點睛】本題考查的是垂徑定理的應用,根據(jù)勾股定理求出OC的長是解答此題的關鍵.16、-1.【解析】
根據(jù)根的判別式計算即可.【詳解】解:依題意得:∵關于的一元二次方程有兩個相等的實數(shù)根,∴==4-41(-k)=4+4k=0解得,k=-1.故答案為:-1.【點睛】本題考查了一元二次方程根的判別式,當=>0時,方程有兩個不相等的實數(shù)根;當==0時,方程有兩個相等的實數(shù)根;當=<0時,方程無實數(shù)根.17、9【解析】分析:根據(jù)正多邊形的性質:正多邊形的每個內角都相等,結合多邊形內角和定理列出方程進行解答即可.詳解:由題意可得:140n=180(n-2),解得:n=9.故答案為:9.點睛:本題解題的關鍵是要明白以下兩點:(1)正多邊形的每個內角相等;(2)n邊形的內角和=180(n-2).三、解答題(共7小題,滿分69分)18、(1);(2)P(1,);(3)3或5.【解析】
(1)將點A、B代入拋物線,用待定系數(shù)法求出解析式.(2)對稱軸為直線x=1,過點P作PG⊥y軸,垂足為G,由∠PBO=∠BAO,得tan∠PBO=tan∠BAO,即,可求出P的坐標.(3)新拋物線的表達式為,由題意可得DE=2,過點F作FH⊥y軸,垂足為H,∵DE∥FH,EO=2OF,∴,∴FH=1.然后分情況討論點D在y軸的正半軸上和在y軸的負半軸上,可求得m的值為3或5.【詳解】解:(1)∵拋物線經過點A(﹣2,0),點B(0,4)∴,解得,∴拋物線解析式為,(2),∴對稱軸為直線x=1,過點P作PG⊥y軸,垂足為G,∵∠PBO=∠BAO,∴tan∠PBO=tan∠BAO,∴,∴,∴,,∴P(1,),(3)設新拋物線的表達式為則,,DE=2過點F作FH⊥y軸,垂足為H,∵DE∥FH,EO=2OF∴,∴FH=1.點D在y軸的正半軸上,則,∴,∴,∴m=3,點D在y軸的負半軸上,則,∴,∴,∴m=5,∴綜上所述m的值為3或5.【點睛】本題是二次函數(shù)和相似三角形的綜合題目,整體難度不大,但是非常巧妙,學會靈活運用是關鍵.19、2x-40.【解析】
原式利用多項式乘以多項式法則計算,去括號合并即可.【詳解】解:原式=x2-6x+7x-42-x2-x+2x+2=2x-40.【點睛】此題考查了整式的混合運算,熟練掌握運算法則是解本題的關鍵.20、1m【解析】
連接AN、BQ,過B作BE⊥AN于點E.在Rt△AMN和在Rt△BMQ中,根據(jù)三角函數(shù)就可以求得AN,BQ,求得NQ,AE的長,在直角△ABE中,依據(jù)勾股定理即可求得AB的長.【詳解】連接AN、BQ,∵點A在點N的正北方向,點B在點Q的正北方向,∴AN⊥l,BQ⊥l,在Rt△AMN中:tan∠AMN=,∴AN=1,在Rt△BMQ中:tan∠BMQ=,∴BQ=30,過B作BE⊥AN于點E,則BE=NQ=30,∴AE=AN-BQ=30,在Rt△ABE中,AB2=AE2+BE2,AB2=(30)2+302,∴AB=1.答:湖中兩個小亭A、B之間的距離為1米.【點睛】本題考查勾股定理、解直角三角形等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題.21、(1)見解析;(2)+【解析】
(1)利用題中的邊的關系可求出△OAC是正三角形,然后利用角邊關系又可求出∠CAB=30°,從而求出∠OAB=90°,所以判斷出直線AB與⊙O相切;(2)作AE⊥CD于點E,由已知條件得出AC=2,再求出AE=CE,根據(jù)直角三角形的性質就可以得到AD.【詳解】(1)直線AB是⊙O的切線,理由如下:連接OA.∵OC=BC,AC=OB,∴OC=BC=AC=OA,∴△ACO是等邊三角形,∴∠O=∠OCA=60°,又∵∠B=∠CAB,∴∠B=30°,∴∠OAB=90°.∴AB是⊙O的切線.(2)作AE⊥CD于點E.∵∠O
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 環(huán)保行業(yè)廢棄物處理管理制度及崗位職責
- 道路工程施工設備管理計劃
- 寵物寄養(yǎng)服務免責條款及協(xié)議
- 2024年可再生能源發(fā)電項目合作協(xié)議
- 基于云計算平臺服務合作協(xié)議
- 影視娛樂行業(yè)演員參演合同協(xié)議
- 廣告發(fā)布代理協(xié)議
- 智能手表研發(fā)合作合同
- 新能源汽車研發(fā)投資合同
- 藝術品交易市場合作框架協(xié)議
- 2024 消化內科專業(yè) 藥物臨床試驗GCP管理制度操作規(guī)程設計規(guī)范應急預案
- 2024-2030年中國電子郵箱行業(yè)市場運營模式及投資前景預測報告
- 基礎設施零星維修 投標方案(技術方案)
- 人力資源 -人效評估指導手冊
- 大疆80分鐘在線測評題
- 2024屆廣東省廣州市高三上學期調研測試英語試題及答案
- 中煤平朔集團有限公司招聘筆試題庫2024
- 2023年成都市青白江區(qū)村(社區(qū))“兩委”后備人才考試真題
- 不付租金解除合同通知書
- 區(qū)域合作伙伴合作協(xié)議書范本
- 中學數(shù)學教學設計全套教學課件
評論
0/150
提交評論