版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
西省渭南市富平縣2024屆中考數(shù)學全真模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列說法正確的是()A.對角線相等且互相垂直的四邊形是菱形B.對角線互相平分的四邊形是正方形C.對角線互相垂直的四邊形是平行四邊形D.對角線相等且互相平分的四邊形是矩形2.如圖,小巷左右兩側是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,頂端距離地面2米,那么小巷的寬度為()A.0.7米 B.1.5米 C.2.2米 D.2.4米3.每到四月,許多地方楊絮、柳絮如雪花般漫天飛舞,人們不堪其憂,據(jù)測定,楊絮纖維的直徑約為0.0000105m,該數(shù)值用科學記數(shù)法表示為()A.1.05×105 B.0.105×10﹣4 C.1.05×10﹣5 D.105×10﹣74.以下各圖中,能確定的是()A. B. C. D.5.如圖所示,△ABC為等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG邊長也為2,且AC與DE在同一直線上,△ABC從C點與D點重合開始,沿直線DE向右平移,直到點A與點E重合為止,設CD的長為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關系的圖象大致是()A. B.C. D.6.如圖,在5×5的方格紙中將圖①中的圖形N平移到如圖②所示的位置,那么下列平移正確的是()A.先向下移動1格,再向左移動1格 B.先向下移動1格,再向左移動2格C.先向下移動2格,再向左移動1格 D.先向下移動2格,再向左移動2格7.下列美麗的圖案中,不是軸對稱圖形的是()A. B. C. D.8.下列方程中,兩根之和為2的是()A.x2+2x﹣3=0 B.x2﹣2x﹣3=0 C.x2﹣2x+3=0 D.4x2﹣2x﹣3=09.如圖,在中,,,,點在以斜邊為直徑的半圓上,點是的三等分點,當點沿著半圓,從點運動到點時,點運動的路徑長為()A.或 B.或 C.或 D.或10.已知函數(shù)y=的圖象如圖,當x≥﹣1時,y的取值范圍是()A.y<﹣1 B.y≤﹣1 C.y≤﹣1或y>0 D.y<﹣1或y≥0二、填空題(本大題共6個小題,每小題3分,共18分)11.計算(2a)3的結果等于__.12.若反比例函數(shù)y=的圖象在每一個象限中,y隨著x的增大而減小,則m的取值范圍是_____.13.如圖,在△ABC中,AB≠AC.D,E分別為邊AB,AC上的點.AC=3AD,AB=3AE,點F為BC邊上一點,添加一個條件:______,可以使得△FDB與△ADE相似.(只需寫出一個)
14.閱讀下面材料:數(shù)學活動課上,老師出了一道作圖問題:“如圖,已知直線l和直線l外一點P.用直尺和圓規(guī)作直線PQ,使PQ⊥l于點Q.”小艾的作法如下:(1)在直線l上任取點A,以A為圓心,AP長為半徑畫?。?)在直線l上任取點B,以B為圓心,BP長為半徑畫弧.(3)兩弧分別交于點P和點M(4)連接PM,與直線l交于點Q,直線PQ即為所求.老師表揚了小艾的作法是對的.請回答:小艾這樣作圖的依據(jù)是_____.15.如圖,利用標桿測量建筑物的高度,已知標桿高1.2,測得,則建筑物的高是__________.16.方程的解為__________.三、解答題(共8題,共72分)17.(8分)如圖,在△ABC中,∠BAC=90°,AB=AC,D為AB邊上一點,連接CD,過點A作AE⊥CD于點E,且交BC于點F,AG平分∠BAC交CD于點G.求證:BF=AG.18.(8分)解方程:xx+1+219.(8分)在連接A、B兩市的公路之間有一個機場C,機場大巴由A市駛向機場C,貨車由B市駛向A市,兩車同時出發(fā)勻速行駛,圖中線段、折線分別表示機場大巴、貨車到機場C的路程y(km)與出發(fā)時間x(h)之間的函數(shù)關系圖象.直接寫出連接A、B兩市公路的路程以及貨車由B市到達A市所需時間.求機場大巴到機場C的路程y(km)與出發(fā)時間x(h)之間的函數(shù)關系式.求機場大巴與貨車相遇地到機場C的路程.20.(8分)(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)(2)(m﹣1﹣).21.(8分)某校決定加強羽毛球、籃球、乒乓球、排球、足球五項球類運動,每位同學必須且只能選擇一項球類運動,對該校學生隨機抽取進行調(diào)查,根據(jù)調(diào)查結果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計圖:運動項目
頻數(shù)(人數(shù))
羽毛球
30
籃球
乒乓球
36
排球
足球
12
請根據(jù)以上圖表信息解答下列問題:頻數(shù)分布表中的,;在扇形統(tǒng)計圖中,“排球”所在的扇形的圓心角為度;全校有多少名學生選擇參加乒乓球運動?22.(10分)已知平行四邊形ABCD中,CE平分∠BCD且交AD于點E,AF∥CE,且交BC于點F.求證:△ABF≌△CDE;如圖,若∠1=65°,求∠B的大?。?3.(12分)一天晚上,李明利用燈光下的影子長來測量一路燈D的高度.如圖,當在點A處放置標桿時,李明測得直立的標桿高AM與影子長AE正好相等,接著李明沿AC方向繼續(xù)向前走,走到點B處放置同一個標桿,測得直立標桿高BN的影子恰好是線段AB,并測得AB=1.2m,已知標桿直立時的高為1.8m,求路燈的高CD的長.24.某高中學校為高一新生設計的學生板凳的正面視圖如圖所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距離分別為40cm、8cm.為使板凳兩腿底端A、D之間的距離為50cm,那么橫梁EF應為多長?(材質(zhì)及其厚度等暫忽略不計).
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】分析:根據(jù)菱形,正方形,平行四邊形,矩形的判定定理,進行判定,即可解答.詳解:A、對角線互相平分且垂直的四邊形是菱形,故錯誤;
B、四條邊相等的四邊形是菱形,故錯誤;
C、對角線相互平分的四邊形是平行四邊形,故錯誤;
D、對角線相等且相互平分的四邊形是矩形,正確;
故選D.點睛:本題考查了菱形,正方形,平行四邊形,矩形的判定定理,解決本題的關鍵是熟記四邊形的判定定理.2、C【解析】
在直角三角形中利用勾股定理計算出直角邊,即可求出小巷寬度.【詳解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故選C.【點睛】本題考查勾股定理的運用,利用梯子長度不變找到斜邊是關鍵.3、C【解析】試題分析:絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10﹣n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.所以0.0000105=1.05×10﹣5,故選C.考點:科學記數(shù)法.4、C【解析】
逐一對選項進行分析即可得出答案.【詳解】A中,利用三角形外角的性質(zhì)可知,故該選項錯誤;B中,不能確定的大小關系,故該選項錯誤;C中,因為同弧所對的圓周角相等,所以,故該選項正確;D中,兩直線不平行,所以,故該選項錯誤.故選:C.【點睛】本題主要考查平行線的性質(zhì)及圓周角定理的推論,掌握圓周角定理的推論是解題的關鍵.5、A【解析】
此題可分為兩段求解,即C從D點運動到E點和A從D點運動到E點,列出面積隨動點變化的函數(shù)關系式即可.【詳解】解:設CD的長為與正方形DEFG重合部分圖中陰影部分的面積為當C從D點運動到E點時,即時,.當A從D點運動到E點時,即時,,與x之間的函數(shù)關系由函數(shù)關系式可看出A中的函數(shù)圖象與所求的分段函數(shù)對應.故選A.【點睛】本題考查的動點變化過程中面積的變化關系,重點是列出函數(shù)關系式,但需注意自變量的取值范圍.6、C【解析】
根據(jù)題意,結合圖形,由平移的概念求解.【詳解】由方格可知,在5×5方格紙中將圖①中的圖形N平移后的位置如圖②所示,那么下面平移中正確的是:先向下移動2格,再向左移動1格,故選C.【點睛】本題考查平移的基本概念及平移規(guī)律,是比較簡單的幾何圖形變換.關鍵是要觀察比較平移前后物體的位置.7、A【解析】
根據(jù)軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是軸對稱圖形,故本選項正確;B、是軸對稱圖形,故本選項錯誤;C、是軸對稱圖形,故本選項錯誤;D、是軸對稱圖形,故本選項錯誤.故選A.【點睛】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.8、B【解析】
由根與系數(shù)的關系逐項判斷各項方程的兩根之和即可.【詳解】在方程x2+2x-3=0中,兩根之和等于-2,故A不符合題意;在方程x2-2x-3=0中,兩根之和等于2,故B符合題意;在方程x2-2x+3=0中,△=(-2)2-4×3=-8<0,則該方程無實數(shù)根,故C不符合題意;在方程4x2-2x-3=0中,兩根之和等于-,故D不符合題意,故選B.【點睛】本題主要考查根與系數(shù)的關系,掌握一元二次方程的兩根之和等于-、兩根之積等于是解題的關鍵.9、A【解析】
根據(jù)平行線的性質(zhì)及圓周角定理的推論得出點M的軌跡是以EF為直徑的半圓,進而求出半徑即可得出答案,注意分兩種情況討論.【詳解】當點D與B重合時,M與F重合,當點D與A重合時,M與E重合,連接BD,F(xiàn)M,AD,EM,∵∴∵AB是直徑即∴∴點M的軌跡是以EF為直徑的半圓,∵∴以EF為直徑的圓的半徑為1∴點M運動的路徑長為當時,同理可得點M運動的路徑長為故選:A.【點睛】本題主要考查動點的運動軌跡,掌握圓周角定理的推論,平行線的性質(zhì)和弧長公式是解題的關鍵.10、C【解析】試題分析:根據(jù)反比例函數(shù)的性質(zhì),再結合函數(shù)的圖象即可解答本題.解:根據(jù)反比例函數(shù)的性質(zhì)和圖象顯示可知:此函數(shù)為減函數(shù),x≥-1時,在第三象限內(nèi)y的取值范圍是y≤-1;在第一象限內(nèi)y的取值范圍是y>1.故選C.考點:本題考查了反比例函數(shù)的性質(zhì)點評:此類試題屬于難度一般的試題,考生在解答此類試題時一定要注意分析反比例函數(shù)的基本性質(zhì)和知識,反比例函數(shù)y=的圖象是雙曲線,當k>1時,圖象在一、三象限,在每個象限內(nèi)y隨x的增大而減?。划攌<1時,圖象在二、四象限,在每個象限內(nèi),y隨x的增大而增大二、填空題(本大題共6個小題,每小題3分,共18分)11、8【解析】試題分析:根據(jù)冪的乘方與積的乘方運算法則進行計算即可考點:(1)、冪的乘方;(2)、積的乘方12、m>1【解析】∵反比例函數(shù)的圖象在其每個象限內(nèi),y隨x的增大而減小,∴>0,解得:m>1,故答案為m>1.13、或【解析】因為,,,所以,欲使與相似,只需要與相似即可,則可以添加的條件有:∠A=∠BDF,或者∠C=∠BDF,等等,答案不唯一.【方法點睛】在解決本題目,直接處理與,無從下手,沒有公共邊或者公共角,稍作轉化,通過,與相似.這時,柳暗花明,迎刃而解.14、到線段兩端距離相等的點在線段的垂直平分線上或兩點確定一條直線或sss或全等三角形對應角相等或等腰三角形的三線合一【解析】
從作圖方法以及作圖結果入手考慮其作圖依據(jù)..【詳解】解:依題意,AP=AM,BP=BM,根據(jù)垂直平分線的定義可知PM⊥直線l.因此易知小艾的作圖依據(jù)是到線段兩端距離相等的點在線段的垂直平分線上;兩點確定一條直線.故答案為到線段兩端距離相等的點在線段的垂直平分線上;兩點確定一條直線.【點睛】本題主要考查尺規(guī)作圖,掌握尺規(guī)作圖的常用方法是解題關鍵.15、10.5【解析】
先證△AEB∽△ABC,再利用相似的性質(zhì)即可求出答案.【詳解】解:由題可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.5(m).故答案為10.5.【點睛】本題考查了相似的判定和性質(zhì).利用相似的性質(zhì)列出含所求邊的比例式是解題的關鍵.16、【解析】
兩邊同時乘,得到整式方程,解整式方程后進行檢驗即可.【詳解】解:兩邊同時乘,得,解得,檢驗:當時,≠0,所以x=1是原分式方程的根,故答案為:x=1.【點睛】本題考查了解分式方程,熟練掌握解分式方程的一般步驟以及注意事項是解題的關鍵.三、解答題(共8題,共72分)17、見解析【解析】
根據(jù)角平分線的性質(zhì)和直角三角形性質(zhì)求∠BAF=∠ACG.進一步證明△ABF≌△CAG,從而證明BF=AG.【詳解】證明:∵∠BAC=90°,,AB=AC,∴∠B=∠ACB=45°,又∵AG平分∠BAC,∴∠GAC=∠BAC=45°,又∵∠BAC=90°,AE⊥CD,∴∠BAF+∠ADE=90°,∠ACG+∠ADE=90°,∴∠BAF=∠ACG.又∵AB=CA,∴∴△ABF≌△CAG(ASA),∴BF=AG【點睛】此題重點考查學生對三角形全等證明的理解,熟練掌握兩三角形全等的證明是解題的關鍵.18、-3【解析】試題分析:解得x=-3經(jīng)檢驗:x=-3是原方程的根.∴原方程的根是x=-3考點:解一元一次方程點評:在中考中比較常見,在各種題型中均有出現(xiàn),一般難度不大,要熟練掌握.19、(1)連接A、B兩市公路的路程為80km,貨車由B市到達A市所需時間為h;(2)y=﹣80x+60(0≤x≤);(3)機場大巴與貨車相遇地到機場C的路程為km.【解析】
(1)根據(jù)可求出連接A、B兩市公路的路程,再根據(jù)貨車h行駛20km可求出貨車行駛60km所需時間;(2)根據(jù)函數(shù)圖象上點的坐標,利用待定系數(shù)法即可求出機場大巴到機場C的路程y(km)與出發(fā)時間x(h)之間的函數(shù)關系式;(3)利用待定系數(shù)法求出線段ED對應的函數(shù)表達式,聯(lián)立兩函數(shù)表達式成方程組,通過解方程組可求出機場大巴與貨車相遇地到機場C的路程.【詳解】解:(1)60+20=80(km),(h)∴連接A.
B兩市公路的路程為80km,貨車由B市到達A市所需時間為h.(2)設所求函數(shù)表達式為y=kx+b(k≠0),將點(0,60)、代入y=kx+b,得:解得:∴機場大巴到機場C的路程y(km)與出發(fā)時間x(h)之間的函數(shù)關系式為(3)設線段ED對應的函數(shù)表達式為y=mx+n(m≠0)將點代入y=mx+n,得:解得:∴線段ED對應的函數(shù)表達式為解方程組得∴機場大巴與貨車相遇地到機場C的路程為km.【點睛】本題考查一次函數(shù)的應用,掌握待定系數(shù)法求函數(shù)關系式是解題的關鍵,本題屬于中檔題,難度不大,但過程比較繁瑣,因此再解決該題是一定要細心.20、(1);(2)【解析】試題分析:(1)先去括號,再合并同類項即可;(2)先計算括號里的,再將除法轉換在乘法計算.試題解析:(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)=a2﹣2ab+b2﹣a2+2ab+4a2﹣b2=4a2;(2).====.21、(1)24,1;(2)54;(3)360.【解析】
(1)根據(jù)選擇乒乓球運動的人數(shù)是36人,對應的百分比是30%,即可求得總人數(shù),然后利用百分比的定義求得a,用總人數(shù)減去其它組的人數(shù)求得b;(2)利用360°乘以對應的百分比即可求得;(3)求得全??側藬?shù),然后利用總人數(shù)乘以對應的百分比求解.【詳解】(1)抽取的人數(shù)是36÷30%=120(人),則a=120×20%=24,b=120﹣30﹣24﹣36﹣12=1.故答案是:24,1;(2)“排球”所在的扇形的圓心角為360°×=54°,故答案是:54;(3)全??側藬?shù)是120÷10%=1200(人),則選擇參加乒乓球運動的人數(shù)是1200×30%=360(人).22、(1)證明見解析;(2)50°.【解析】試題分析:(1)由平行四邊形的性質(zhì)得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠DCE,證出∠AFB=∠1,由AAS證明△ABF≌△CDE即可;(2)由(1)得∠1=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國家庭服務機器人行業(yè)商業(yè)模式創(chuàng)新戰(zhàn)略制定與實施研究報告
- 2025-2030年中國虛擬養(yǎng)老院行業(yè)營銷創(chuàng)新戰(zhàn)略制定與實施研究報告
- 建設社會主義文化強國論文
- 中國心理測試儀器行業(yè)市場深度分析及發(fā)展趨勢預測報告
- 一年級數(shù)學計算題專項練習匯編
- 大客車常用知識培訓課件
- 年產(chǎn)40000噸環(huán)保新能源材料生產(chǎn)線項目可行性研究報告寫作模板-拿地申報
- 2025年人教版音樂六年級下冊教學計劃
- 二零二五年度會員尊享健康養(yǎng)生協(xié)議3篇
- 森林滅火知識培訓課件
- 常見婦科三大惡性腫瘤的流行及疾病負擔研究現(xiàn)狀
- CTD申報資料撰寫模板:模塊三之3.2.S.4原料藥的質(zhì)量控制
- (正式版)JTT 1482-2023 道路運輸安全監(jiān)督檢查規(guī)范
- 圍手術期血糖的管理
- 2024年度醫(yī)療器械監(jiān)督管理條例培訓課件
- 項目七電子商務消費者權益保護的法律法規(guī)
- 100以內(nèi)不進位不退位加減法練習題
- 企業(yè)安全生產(chǎn)評估報告
- 水庫大壩深基坑開挖專項方案樣本
- 經(jīng)橈動脈腦血管造影術前術后護理
- 運行設備巡回檢查制度模版
評論
0/150
提交評論