版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2023-2024學年江蘇省蘇州市昆山市達標名校中考聯(lián)考數(shù)學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,一張半徑為的圓形紙片在邊長為的正方形內(nèi)任意移動,則在該正方形內(nèi),這張圓形紙片“能接觸到的部分”的面積是()A. B. C. D.2.如果向北走6km記作+6km,那么向南走8km記作()A.+8kmB.﹣8kmC.+14kmD.﹣2km3.如圖,已知,,則的度數(shù)為()A. B. C. D.4.如圖,在矩形ABCD中,AD=1,AB>1,AG平分∠BAD,分別過點B,C作BE⊥AG于點E,CF⊥AG于點F,則AE-GF的值為()A.1 B.2 C.32 D.5.圖1~圖4是四個基本作圖的痕跡,關(guān)于四條?、佟ⅱ?、③、④有四種說法:弧①是以O為圓心,任意長為半徑所畫的??;?、谑且訮為圓心,任意長為半徑所畫的??;?、凼且訟為圓心,任意長為半徑所畫的??;?、苁且訮為圓心,任意長為半徑所畫的弧;其中正確說法的個數(shù)為()A.4 B.3 C.2 D.16.如圖所示,數(shù)軸上兩點A,B分別表示實數(shù)a,b,則下列四個數(shù)中最大的一個數(shù)是(
)A.a(chǎn)
B.b
C. D.7.如圖圖形中是中心對稱圖形的是()A. B.C. D.8.計算3a2-a2的結(jié)果是()A.4a2B.3a2C.2a2D.39.一個正比例函數(shù)的圖象過點(2,﹣3),它的表達式為()A. B. C. D.10.如圖,小穎為測量學校旗桿AB的高度,她在E處放置一塊鏡子,然后退到C處站立,剛好從鏡子中看到旗桿的頂部B.已知小穎的眼睛D離地面的高度CD=1.5m,她離鏡子的水平距離CE=0.5m,鏡子E離旗桿的底部A處的距離AE=2m,且A、C、E三點在同一水平直線上,則旗桿AB的高度為()A.4.5m B.4.8m C.5.5m D.6m二、填空題(共7小題,每小題3分,滿分21分)11.在實數(shù)范圍內(nèi)分解因式:x2y﹣2y=_____.12.已知關(guān)于x的方程x2﹣2x+n=1沒有實數(shù)根,那么|2﹣n|﹣|1﹣n|的化簡結(jié)果是_____.13.如圖,在平面直角坐標系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=1.若把矩形OABC繞著點O逆時針旋轉(zhuǎn),使點A恰好落在BC邊上的A1處,則點C的對應點C1的坐標為_____.14.如圖,四邊形ACDF是正方形,和都是直角,且點三點共線,,則陰影部分的面積是__________.15.分解因式:ax2-a=______.16.如圖,點A的坐標為(3,),點B的坐標為(6,0),將△AOB繞點B按順時針方向旋轉(zhuǎn)一定的角度后得到△A′O′B,點A的對應點A′在x軸上,則點O′的坐標為_____.17.請從以下兩個小題中任選一個作答,若多選,則按第一題計分.A.正多邊形的一個外角是40°,則這個正多邊形的邊數(shù)是____________.B.運用科學計算器比較大?。篲_______sin37.5°.三、解答題(共7小題,滿分69分)18.(10分)網(wǎng)癮低齡化問題已經(jīng)引起社會各界的高度關(guān)注,有關(guān)部門在全國范圍內(nèi)對12﹣35歲的網(wǎng)癮人群進行了簡單的隨機抽樣調(diào)查,繪制出以下兩幅統(tǒng)計圖.請根據(jù)圖中的信息,回答下列問題:(1)這次抽樣調(diào)查中共調(diào)查了人;(2)請補全條形統(tǒng)計圖;(3)扇形統(tǒng)計圖中18﹣23歲部分的圓心角的度數(shù)是;(4)據(jù)報道,目前我國12﹣35歲網(wǎng)癮人數(shù)約為2000萬,請估計其中12﹣23歲的人數(shù)19.(5分)(1)問題發(fā)現(xiàn):如圖①,在等邊三角形ABC中,點M為BC邊上異于B、C的一點,以AM為邊作等邊三角形AMN,連接CN,NC與AB的位置關(guān)系為;(2)深入探究:如圖②,在等腰三角形ABC中,BA=BC,點M為BC邊上異于B、C的一點,以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由;(3)拓展延伸:如圖③,在正方形ADBC中,AD=AC,點M為BC邊上異于B、C的一點,以AM為邊作正方形AMEF,點N為正方形AMEF的中點,連接CN,若BC=10,CN=,試求EF的長.20.(8分)已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點E在邊AD上(不與點A、D重合),∠CEB=45°,EB與對角線AC相交于點F,設DE=x.(1)用含x的代數(shù)式表示線段CF的長;(2)如果把△CAE的周長記作C△CAE,△BAF的周長記作C△BAF,設=y(tǒng),求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;(3)當∠ABE的正切值是時,求AB的長.21.(10分)某超市預測某飲料會暢銷、先用1800元購進一批這種飲料,面市后果然供不應求,又用8100元購進這種飲料,第二批飲料的數(shù)量是第一批的3倍,但單價比第一批貴2元.第一批飲料進貨單價多少元?若兩次進飲料都按同一價格銷售,兩批全部售完后,獲利不少于2700元,那么銷售單價至少為多少元?22.(10分)如圖,在Rt△ABC中∠ABC=90°,AC的垂直平分線交BC于D點,交AC于E點,OC=OD.(1)若,DC=4,求AB的長;(2)連接BE,若BE是△DEC的外接圓的切線,求∠C的度數(shù).23.(12分)某經(jīng)銷商從市場得知如下信息:A品牌手表B品牌手表進價(元/塊)700100售價(元/塊)900160他計劃用4萬元資金一次性購進這兩種品牌手表共100塊,設該經(jīng)銷商購進A品牌手表x塊,這兩種品牌手表全部銷售完后獲得利潤為y元.試寫出y與x之間的函數(shù)關(guān)系式;若要求全部銷售完后獲得的利潤不少于1.26萬元,該經(jīng)銷商有哪幾種進貨方案;選擇哪種進貨方案,該經(jīng)銷商可獲利最大;最大利潤是多少元.24.(14分)如圖,矩形中,點是線段上一動點,為的中點,的延長線交BC于.(1)求證:;(2)若,,從點出發(fā),以l的速度向運動(不與重合).設點運動時間為,請用表示的長;并求為何值時,四邊形是菱形.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
這張圓形紙片減去“不能接觸到的部分”的面積是就是這張圓形紙片“能接觸到的部分”的面積.【詳解】解:如圖:∵正方形的面積是:4×4=16;扇形BAO的面積是:,∴則這張圓形紙片“不能接觸到的部分”的面積是4×1-4×=4-π,∴這張圓形紙片“能接觸到的部分”的面積是16-(4-π)=12+π,故選C.【點睛】本題主要考查了正方形和扇形的面積的計算公式,正確記憶公式是解題的關(guān)鍵.2、B【解析】
正負數(shù)的應用,先判斷向北、向南是不是具有相反意義的量,再用正負數(shù)表示出來【詳解】解:向北和向南互為相反意義的量.若向北走6km記作+6km,那么向南走8km記作﹣8km.故選:B.【點睛】本題考查正負數(shù)在生活中的應用.注意用正負數(shù)表示的量必須是具有相反意義的量.3、B【解析】分析:根據(jù)∠AOC和∠BOC的度數(shù)得出∠AOB的度數(shù),從而得出答案.詳解:∵∠AOC=70°,∠BOC=30°,∴∠AOB=70°-30°=40°,∴∠AOD=∠AOB+∠BOD=40°+70°=110°,故選B.點睛:本題主要考查的是角度的計算問題,屬于基礎題型.理解各角之間的關(guān)系是解題的關(guān)鍵.4、D【解析】
設AE=x,則AB=2x,由矩形的性質(zhì)得出∠BAD=∠D=90°,CD=AB,證明△ADG是等腰直角三角形,得出AG=2AD=2,同理得出CD=AB=2x,CG=CD-DG=2x-1,CG=2GF,得出GF,即可得出結(jié)果.【詳解】設AE=x,
∵四邊形ABCD是矩形,
∴∠BAD=∠D=90°,CD=AB,∵AG平分∠BAD,∴∠DAG=45°,∴△ADG是等腰直角三角形,∴DG=AD=1,∴AG=2AD=2,同理:BE=AE=x,CD=AB=2x,∴CG=CD-DG=2x-1,同理:CG=2GF,∴FG=22∴AE-GF=x-(x-22)=2故選D.【點睛】本題考查了矩形的性質(zhì)、等腰直角三角形的判定與性質(zhì),勾股定理;熟練掌握矩形的性質(zhì)和等腰直角三角形的性質(zhì),并能進行推理計算是解決問題的關(guān)鍵.5、C【解析】
根據(jù)基本作圖的方法即可得到結(jié)論.【詳解】解:(1)?、偈且設為圓心,任意長為半徑所畫的弧,正確;(2)?、谑且訮為圓心,大于點P到直線的距離為半徑所畫的弧,錯誤;(3)?、凼且訟為圓心,大于AB的長為半徑所畫的弧,錯誤;(4)?、苁且訮為圓心,任意長為半徑所畫的弧,正確.故選C.【點睛】此題主要考查了基本作圖,解決問題的關(guān)鍵是掌握基本作圖的方法.6、D【解析】
∵負數(shù)小于正數(shù),在(0,1)上的實數(shù)的倒數(shù)比實數(shù)本身大.∴<a<b<,故選D.7、B【解析】
把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形.【詳解】解:根據(jù)中心對稱圖形的定義可知只有B選項是中心對稱圖形,故選擇B.【點睛】本題考察了中心對稱圖形的含義.8、C【解析】【分析】根據(jù)合并同類項法則進行計算即可得.【詳解】3a2-a2=(3-1)a2=2a2,故選C.【點睛】本題考查了合并同類項,熟記合并同類項的法則是解題的關(guān)鍵.合并同類項就是把同類項的系數(shù)相加減,字母和字母的指數(shù)不變.9、A【解析】
利用待定系數(shù)法即可求解.【詳解】設函數(shù)的解析式是y=kx,根據(jù)題意得:2k=﹣3,解得:k=.∴函數(shù)的解析式是:.故選A.10、D【解析】
根據(jù)題意得出△ABE∽△CDE,進而利用相似三角形的性質(zhì)得出答案.【詳解】解:由題意可得:AE=2m,CE=0.5m,DC=1.5m,∵△ABC∽△EDC,∴DCAB即1.5AB解得:AB=6,故選:D.【點睛】本題考查的是相似三角形在實際生活中的應用,根據(jù)題意得出△ABE∽△CDE是解答此題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、y(x+)(x﹣)【解析】
先提取公因式y(tǒng)后,再把剩下的式子寫成x2-()2,符合平方差公式的特點,可以繼續(xù)分解.【詳解】x2y-2y=y(x2-2)=y(x+)(x-).故答案為y(x+)(x-).【點睛】本題考查實數(shù)范圍內(nèi)的因式分解,因式分解的步驟為:一提公因式;二看公式.在實數(shù)范圍內(nèi)進行因式分解的式子的結(jié)果一般要分到出現(xiàn)無理數(shù)為止.12、﹣1【解析】
根據(jù)根與系數(shù)的關(guān)系得出b2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,求出n>2,再去絕對值符號,即可得出答案.【詳解】解:∵關(guān)于x的方程x2?2x+n=1沒有實數(shù)根,∴b2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,∴n>2,∴|2?n|-│1-n│=n-2-n+1=-1.故答案為-1.【點睛】本題考查了根的判別式,解題的關(guān)鍵是根據(jù)根與系數(shù)的關(guān)系求出n的取值范圍再去絕對值求解即可.13、【解析】
直接利用相似三角形的判定與性質(zhì)得出△ONC1三邊關(guān)系,再利用勾股定理得出答案.【詳解】過點C1作C1N⊥x軸于點N,過點A1作A1M⊥x軸于點M,由題意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,則△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴設NO=1x,則NC1=4x,OC1=1,則(1x)2+(4x)2=9,解得:x=±(負數(shù)舍去),則NO=,NC1=,故點C的對應點C1的坐標為:(﹣,).故答案為(﹣,).【點睛】此題主要考查了矩形的性質(zhì)以及勾股定理等知識,正確得出△A1OM∽△OC1N是解題關(guān)鍵.14、8【解析】【分析】證明△AEC≌△FBA,根據(jù)全等三角形對應邊相等可得EC=AB=4,然后再利用三角形面積公式進行求解即可.【詳解】∵四邊形ACDF是正方形,∴AC=FA,∠CAF=90°,∴∠CAE+∠FAB=90°,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠ACE=∠FAB,又∵∠AEC=∠FBA=90°,∴△AEC≌△FBA,∴CE=AB=4,∴S陰影==8,故答案為8.【點睛】本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì),三角形面積等,求出CE=AB是解題的關(guān)鍵.15、【解析】
先提公因式,再套用平方差公式.【詳解】ax2-a=a(x2-1)=故答案為:【點睛】掌握因式分解的一般方法:提公因式法,公式法.16、(,)【解析】
作AC⊥OB、O′D⊥A′B,由點A、B坐標得出OC=3、AC=、BC=OC=3,從而知tan∠ABC==,由旋轉(zhuǎn)性質(zhì)知BO′=BO=6,tan∠A′BO′=tan∠ABO==,設O′D=x、BD=3x,由勾股定理求得x的值,即可知BD、O′D的長即可.【詳解】如圖,過點A作AC⊥OB于C,過點O′作O′D⊥A′B于D,
∵A(3,),
∴OC=3,AC=,
∵OB=6,
∴BC=OC=3,
則tan∠ABC==,
由旋轉(zhuǎn)可知,BO′=BO=6,∠A′BO′=∠ABO,
∴==,
設O′D=x,BD=3x,
由O′D2+BD2=O′B2可得(x)2+(3x)2=62,
解得:x=或x=?(舍),
則BD=3x=,O′D=x=,
∴OD=OB+BD=6+=,
∴點O′的坐標為(,).【點睛】本題考查的是圖形的旋轉(zhuǎn),熟練掌握勾股定理和三角函數(shù)是解題的關(guān)鍵.17、9,>【解析】
(1)根據(jù)任意多邊形外角和等于360可以得到正多邊形的邊數(shù)(2)用科學計算器計算即可比較大小.【詳解】(1)正多邊形的一個外角是40°,任意多邊形外角和等于360(2)利用科學計算器計算可知,sin37.5°.故答案為(1).9,(2).>【點睛】此題重點考察學生對正多邊形外交和的理解,掌握正多邊形外角和,會用科學計算器是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)1500;(2)見解析;(3)108°;(3)12~23歲的人數(shù)為400萬【解析】試題分析:(1)根據(jù)30-35歲的人數(shù)和所占的百分比求調(diào)查的人數(shù);(2)從調(diào)查的總?cè)藬?shù)中減去已知的三組的人數(shù),即可得到12-17歲的人數(shù),據(jù)此補全條形統(tǒng)計圖;(3)先計算18-23歲的人數(shù)占調(diào)查總?cè)藬?shù)的百分比,再計算這一組所對應的圓心角的度數(shù);(4)先計算調(diào)查中12﹣23歲的人數(shù)所占的百分比,再求網(wǎng)癮人數(shù)約為2000萬中的12﹣23歲的人數(shù).試題解析:解:(1)結(jié)合條形統(tǒng)計圖和扇形統(tǒng)計圖可知,30-35歲的人數(shù)為330人,所占的百分比為22%,所以調(diào)查的總?cè)藬?shù)為330÷22%=1500人.故答案為1500;(2)1500-450-420-330=300人.補全的條形統(tǒng)計圖如圖:(3)18-23歲這一組所對應的圓心角的度數(shù)為360×=108°.故答案為108°;(4)(300+450)÷1500=50%,.考點:條形統(tǒng)計圖;扇形統(tǒng)計圖.19、(1)NC∥AB;理由見解析;(2)∠ABC=∠ACN;理由見解析;(3);【解析】
(1)根據(jù)△ABC,△AMN為等邊三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°從而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,證明△BAM≌△CAN,即可得到BM=CN.
(2)根據(jù)△ABC,△AMN為等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根據(jù)相似三角形的性質(zhì)得到,利用等腰三角形的性質(zhì)得到∠BAC=∠MAN,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;
(3)如圖3,連接AB,AN,根據(jù)正方形的性質(zhì)得到∠ABC=∠BAC=45°,∠MAN=45°,根據(jù)相似三角形的性質(zhì)得出,得到BM=2,CM=8,再根據(jù)勾股定理即可得到答案.【詳解】(1)NC∥AB,理由如下:∵△ABC與△MN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,在△ABM與△ACN中,,∴△ABM≌△ACN(SAS),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN∥AB;(2)∠ABC=∠ACN,理由如下:∵=1且∠ABC=∠AMN,∴△ABC~△AMN∴,∵AB=BC,∴∠BAC=(180°﹣∠ABC),∵AM=MN∴∠MAN=(180°﹣∠AMN),∵∠ABC=∠AMN,∴∠BAC=∠MAN,∴∠BAM=∠CAN,∴△ABM~△ACN,∴∠ABC=∠ACN;(3)如圖3,連接AB,AN,∵四邊形ADBC,AMEF為正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC即∠BAM=∠CAN,∵,∴,∴△ABM~△ACN∴,∴=cos45°=,∴,∴BM=2,∴CM=BC﹣BM=8,在Rt△AMC,AM=,∴EF=AM=2.【點睛】本題是四邊形綜合題目,考查了正方形的性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的性質(zhì)、全等三角形的性質(zhì)定理和判定定理、相似三角形的性質(zhì)定理和判定定理等知識;本題綜合性強,有一定難度,證明三角形全等和三角形相似是解決問題的關(guān)鍵.20、(1)CF=;(2)y=(0<x<2);(3)AB=2.5.【解析】
試題分析:(1)根據(jù)等腰直角三角形的性質(zhì),求得∠DAC=∠ACD=45°,進而根據(jù)兩角對應相等的兩三角形相似,可得△CEF∽△CAE,然后根據(jù)相似三角形的性質(zhì)和勾股定理可求解;(2)根據(jù)相似三角形的判定與性質(zhì),由三角形的周長比可求解;(3)由(2)中的相似三角形的對應邊成比例,可求出AB的關(guān)系,然后可由∠ABE的正切值求解.試題解析:(1)∵AD=CD.∴∠DAC=∠ACD=45°,∵∠CEB=45°,∴∠DAC=∠CEB,∵∠ECA=∠ECA,∴△CEF∽△CAE,∴,在Rt△CDE中,根據(jù)勾股定理得,CE=,∵CA=,∴,∴CF=;(2)∵∠CFE=∠BFA,∠CEB=∠CAB,∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BFA,∵∠ABF=180°﹣∠CAB﹣∠AFB,∴∠ECA=∠ABF,∵∠CAE=∠ABF=45°,∴△CEA∽△BFA,∴(0<x<2),(3)由(2)知,△CEA∽△BFA,∴,∴,∴AB=x+2,∵∠ABE的正切值是,∴tan∠ABE=,∴x=,∴AB=x+2=.21、(1)4元/瓶.(2)銷售單價至少為1元/瓶.【解析】
(1)設第一批飲料進貨單價為x元/瓶,則第二批飲料進貨單價為(x+2)元/瓶,根據(jù)數(shù)量=總價÷單價結(jié)合第二批購進飲料的數(shù)量是第一批的3倍,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗后即可得出結(jié)論;(2)由數(shù)量=總價÷單價可得出第一、二批購進飲料的數(shù)量,設銷售單價為y元/瓶,根據(jù)利潤=銷售單價×銷售數(shù)量﹣進貨總價結(jié)合獲利不少于2100元,即可得出關(guān)于y的一元一次不等式,解之取其最小值即可得出結(jié)論.【詳解】(1)設第一批飲料進貨單價為x元/瓶,則第二批飲料進貨單價為(x+2)元/瓶,依題意,得:=3×,解得:x=4,經(jīng)檢驗,x=4是原方程的解,且符合題意.答:第一批飲料進貨單價是4元/瓶;(2)由(1)可知:第一批購進該種飲料450瓶,第二批購進該種飲料1350瓶.設銷售單價為y元/瓶,依題意,得:(450+1350)y﹣1800﹣8100≥2100,解得:y≥1.答:銷售單價至少為1元/瓶.【點睛】本題考查了分式方程的應用以及一元一次不等式的應用,解題的關(guān)鍵是:(1)找準等量關(guān)系,正確列出二元一次方程組;(2)根據(jù)各數(shù)量之間的關(guān)系,正確列出一元一次不等式.22、(1);(2)30°【解析】
(1)由于DE垂直平分AC,那么AE=EC,∠DEC=90°,而∠ABC=∠DEC=90°,∠C=∠C,易證,△ABC∽△DEC,∠A=∠CDE,于是sin∠CDE=sinA=,AB:AC=DE:DC,而DC=4,易求EC,利用勾股定理可求DE,易知AC=6,利用相似三角形中的比例線段可求AB;
(2)連接OE,由于∠DEC=90°,那么∠EDC+∠C=90°,又BE是切線,那么∠BEO=90°,于是∠EOB+∠EBC=90°,而BE是直角三角形斜邊上的中線,那么BE=CE,于是∠EBC=∠C,從而有∠EOB=∠EDC,又OE=OD,易證△DEO是等邊三角形,那么∠EDC=60°,從而可求∠C.【詳解】解:(1)∵AC的垂直平分線交BC于D點,交AC于E點,∴∠DEC=90°,AE=EC,∵∠ABC=90°,∠C=∠C,∴∠A=∠CDE,△ABC∽△DEC,∴sin∠CDE=,AB:AC=DE:DC,∵DC=4,∴ED=3,∴DE=,∴AC=6,∴AB:6=:4,∴AB=;(2)連接OE,∵∠DEC=90°,∴∠EDC+∠C=90°,∵BE是⊙O的切線,∴∠BEO=90°,∴∠EOB+∠EBC=90°,∵E是AC的中點,∠ABC=90°,∴BE=EC,∴∠EBC=∠C,∴∠EOB=∠EDC,又∵OE=OD,∴△DOE是等邊三角形,∴∠EDC=60°,∴∠C=30°.【點睛】考查了切線的性質(zhì)、線段垂直平分線的性質(zhì)、相似三角形的判定和性質(zhì)、勾股定理、等邊三角形的判定和性質(zhì).解題的關(guān)鍵是連接OE,構(gòu)造直角三角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)前臺接待服務供應協(xié)議
- 2025年度離婚協(xié)議書范本:共同債務的承擔與償還4篇
- 2025年度新能源汽車充電設施購銷合同4篇
- 2025年度茶葉電商平臺入駐合作協(xié)議書4篇
- 2025年度柴油儲備與應急供應合同范本4篇
- 2024年05月內(nèi)蒙古2024屆中國民生銀行呼和浩特分行畢業(yè)生“未來銀行家”暑期管培生校園招考筆試歷年參考題庫附帶答案詳解
- 2025年度汽車內(nèi)飾部件委托加工合同書4篇
- 個性化2024版?zhèn)€人勞動協(xié)議匯編版A版
- 2024金融借款協(xié)議樣本版
- 2025年度農(nóng)產(chǎn)品出口FAS貿(mào)易合同范本3篇
- 第二章 運營管理戰(zhàn)略
- 《三本白皮書》全文內(nèi)容及應知應會知識點
- 專題14 思想方法專題:線段與角計算中的思想方法壓軸題四種模型全攻略(解析版)
- 醫(yī)院外來器械及植入物管理制度(4篇)
- 圖像識別領域自適應技術(shù)-洞察分析
- 港口與港口工程概論
- 《念珠菌感染的治療》課件
- 新概念英語第二冊考評試卷含答案(第49-56課)
- 商業(yè)倫理與企業(yè)社會責任(山東財經(jīng)大學)智慧樹知到期末考試答案章節(jié)答案2024年山東財經(jīng)大學
- 【奧運會獎牌榜預測建模實證探析12000字(論文)】
- (完整版)譯林版英語詞匯表(四年級下)
評論
0/150
提交評論