




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
貴州安龍縣市級名校2024屆中考考前最后一卷數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,將木條a,b與c釘在一起,∠1=70°,∠2=50°,要使木條a與b平行,木條a旋轉的度數至少是()A.10° B.20° C.50° D.70°2.某種計算器標價240元,若以8折優(yōu)惠銷售,仍可獲利20%,那么這種計算器的進價為()A.152元 B.156元 C.160元 D.190元3.如圖,在平面直角坐標系xOy中,△由△繞點P旋轉得到,則點P的坐標為()A.(0,1) B.(1,-1) C.(0,-1) D.(1,0)4.不等式組的解集是()A.x>﹣1 B.x≤2 C.﹣1<x<2 D.﹣1<x≤25.一元二次方程x2﹣8x﹣2=0,配方的結果是()A.(x+4)2=18 B.(x+4)2=14 C.(x﹣4)2=18 D.(x﹣4)2=146.如圖,在中,點D為AC邊上一點,則CD的長為()A.1 B. C.2 D.7.如圖,在直角坐標系中,等腰直角△ABO的O點是坐標原點,A的坐標是(﹣4,0),直角頂點B在第二象限,等腰直角△BCD的C點在y軸上移動,我們發(fā)現(xiàn)直角頂點D點隨之在一條直線上移動,這條直線的解析式是()A.y=﹣2x+1 B.y=﹣x+2 C.y=﹣3x﹣2 D.y=﹣x+28.已知二次函數y=x2+bx+c的圖象與x軸相交于A、B兩點,其頂點為P,若S△APB=1,則b與c滿足的關系是()A.b2-4c+1=0 B.b2-4c-1=0 C.b2-4c+4=0 D.b2-4c-4=09.如圖所示的四個圖案是四國冬季奧林匹克運動會會徽圖案上的一部分圖形,其中為軸對稱圖形的是()A. B. C. D.10.一次數學測試后,隨機抽取九年級某班5名學生的成績如下:91,78,1,85,1.關于這組數據說法錯誤的是()A.極差是20 B.中位數是91 C.眾數是1 D.平均數是91二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,點A,B在反比例函數(k>0)的圖象上,AC⊥x軸,BD⊥x軸,垂足C,D分別在x軸的正、負半軸上,CD=k,已知AB=2AC,E是AB的中點,且△BCE的面積是△ADE的面積的2倍,則k的值是______.12.如圖所示一棱長為3cm的正方體,把所有的面均分成3×3個小正方形.其邊長都為1cm,假設一只螞蟻每秒爬行2cm,則它從下底面點A沿表面爬行至側面的B點,最少要用_____秒鐘.13.(﹣12)﹣2﹣(3.14﹣π)014.不解方程,判斷方程2x2+3x﹣2=0的根的情況是_____.15.如圖,在菱形ABCD中,AB=BD.點E、F分別在AB、AD上,且AE=DF.連接BF與DE相交于點G,連接CG與BD相交于點H.下列結論:①△AED≌△DFB;②S四邊形BCDG=CG2;③若AF=2DF,則BG=6GF.其中正確的結論有_____.(填序號)16.如圖,在3×3的方格中,A、B、C、D、E、F分別位于格點上,從C、D、E、F四點中任取一點,與點A、B為頂點作三角形,則所作三角形為等腰三角形的概率是__.三、解答題(共8題,共72分)17.(8分)一個不透明的口袋中有四個完全相同的小球,把它們分別標號為1,2,3,4.隨機摸取一個小球然后放回,再隨機摸出一個小球,求下列事件的概率:兩次取出的小球標號相同;兩次取出的小球標號的和等于4.18.(8分)已知:如圖,在矩形ABCD中,點E,F(xiàn)分別在AB,CD邊上,BE=DF,連接CE,AF.求證:AF=CE.19.(8分)在眉山市櫻花節(jié)期間,岷江二橋一端的空地上有一塊矩形的標語牌ABCD(如圖).已知標語牌的高AB=5m,在地面的點E處,測得標語牌點A的仰角為30°,在地面的點F處,測得標語牌點A的仰角為75°,且點E,F(xiàn),B,C在同一直線上,求點E與點F之間的距離.(計算結果精確到0.1m,參考數據:≈1.41,≈1.73)20.(8分)如圖,用細線懸掛一個小球,小球在豎直平面內的A、C兩點間來回擺動,A點與地面距離AN=14cm,小球在最低點B時,與地面距離BM=5cm,∠AOB=66°,求細線OB的長度.(參考數據:sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)21.(8分)如圖,在菱形ABCD中,點P在對角線AC上,且PA=PD,⊙O是△PAD的外接圓.(1)求證:AB是⊙O的切線;(2)若AC=8,tan∠BAC=,求⊙O的半徑.22.(10分)數學課上,李老師和同學們做一個游戲:他在三張硬紙片上分別寫出一個代數式,背面分別標上序號①、②、③,擺成如圖所示的一個等式,然后翻開紙片②是4x1+5x+6,翻開紙片③是3x1﹣x﹣1.解答下列問題求紙片①上的代數式;若x是方程1x=﹣x﹣9的解,求紙片①上代數式的值.23.(12分)如圖,已知在△ABC中,AB=AC=5,cosB=,P是邊AB上一點,以P為圓心,PB為半徑的⊙P與邊BC的另一個交點為D,聯(lián)結PD、AD.(1)求△ABC的面積;(2)設PB=x,△APD的面積為y,求y關于x的函數關系式,并寫出定義域;(3)如果△APD是直角三角形,求PB的長.24.“低碳生活,綠色出行”是我們倡導的一種生活方式,有關部門抽樣調查了某單位員工上下班的交通方式,繪制了兩幅統(tǒng)計圖:(1)樣本中的總人數為人;扇形統(tǒng)計十圖中“騎自行車”所在扇形的圓心角為度;(2)補全條形統(tǒng)計圖;(3)該單位共有1000人,積極踐行這種生活方式,越來越多的人上下班由開私家車改為騎自行車.若步行,坐公交車上下班的人數保持不變,問原來開私家車的人中至少有多少人改為騎自行車,才能使騎自行車的人數不低于開私家車的人數?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
要使木條a與b平行,那么∠1=∠2,從而可求出木條a至少旋轉的度數.【詳解】解:∵要使木條a與b平行,∴∠1=∠2,∴當∠1需變?yōu)?0o,∴木條a至少旋轉:70o-50o=20o.故選B.【點睛】本題考查了旋轉的性質及平行線的性質:①兩直線平行同位角相等;②兩直線平行內錯角相等;③兩直線平行同旁內角互補;④夾在兩平行線間的平行線段相等.在運用平行線的性質定理時,一定要找準同位角,內錯角和同旁內角.2、C【解析】【分析】設進價為x元,依題意得240×0.8-x=20x℅,解方程可得.【詳解】設進價為x元,依題意得240×0.8-x=20x℅解得x=160所以,進價為160元.故選C【點睛】本題考核知識點:列方程解應用題.解題關鍵點:找出相等關系.3、B【解析】試題分析:根據網格結構,找出對應點連線的垂直平分線的交點即為旋轉中心.試題解析:由圖形可知,對應點的連線CC′、AA′的垂直平分線過點(0,-1),根據旋轉變換的性質,點(1,-1)即為旋轉中心.故旋轉中心坐標是P(1,-1)故選B.考點:坐標與圖形變化—旋轉.4、D【解析】由﹣x<1得,∴x>﹣1,由3x﹣5≤1得,3x≤6,∴x≤2,∴不等式組的解集為﹣1<x≤2,故選D5、C【解析】x2-8x=2,
x2-8x+16=1,
(x-4)2=1.
故選C.【點睛】本題考查了解一元二次方程-配方法:將一元二次方程配成(x+m)2=n的形式,再利用直接開平方法求解,這種解一元二次方程的方法叫配方法.6、C【解析】
根據∠DBC=∠A,∠C=∠C,判定△BCD∽△ACB,根據相似三角形對應邊的比相等得到代入求值即可.【詳解】∵∠DBC=∠A,∠C=∠C,∴△BCD∽△ACB,∴∴∴CD=2.故選:C.【點睛】主要考查相似三角形的判定與性質,掌握相似三角形的判定定理是解題的關鍵.7、D【解析】
抓住兩個特殊位置:當BC與x軸平行時,求出D的坐標;C與原點重合時,D在y軸上,求出此時D的坐標,設所求直線解析式為y=kx+b,將兩位置D坐標代入得到關于k與b的方程組,求出方程組的解得到k與b的值,即可確定出所求直線解析式.【詳解】當BC與x軸平行時,過B作BE⊥x軸,過D作DF⊥x軸,交BC于點G,如圖1所示.∵等腰直角△ABO的O點是坐標原點,A的坐標是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=OA=1,OF=DG=BG=CG=BC=1,DF=DG+GF=3,∴D坐標為(﹣1,3);當C與原點O重合時,D在y軸上,此時OD=BE=1,即D(0,1),設所求直線解析式為y=kx+b(k≠0),將兩點坐標代入得:,解得:.則這條直線解析式為y=﹣x+1.故選D.【點睛】本題屬于一次函數綜合題,涉及的知識有:待定系數法確定一次函數解析式,等腰直角三角形的性質,坐標與圖形性質,熟練運用待定系數法是解答本題的關鍵.8、D【解析】
拋物線的頂點坐標為P(?,),設A、B兩點的坐標為A(,0)、B(,0)則AB=,根據根與系數的關系把AB的長度用b、c表示,而S△APB=1,然后根據三角形的面積公式就可以建立關于b、c的等式.【詳解】解:∵,∴AB==,∵若S△APB=1∴S△APB=×AB×=1,∴?××,∴,設=s,則,故s=2,∴=2,∴.故選D.【點睛】本題主要考查了拋物線與x軸的交點情況與判別式的關系、拋物線頂點坐標公式、三角形的面積公式等知識,綜合性比較強.9、D【解析】
根據軸對稱圖形的概念求解.【詳解】解:根據軸對稱圖形的概念,A、B、C都不是軸對稱圖形,D是軸對稱圖形.
故選D.【點睛】本題主要考查軸對稱圖形,軸對稱圖形的判斷方法:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形10、D【解析】
試題分析:因為極差為:1﹣78=20,所以A選項正確;從小到大排列為:78,85,91,1,1,中位數為91,所以B選項正確;因為1出現(xiàn)了兩次,最多,所以眾數是1,所以C選項正確;因為,所以D選項錯誤.故選D.考點:①眾數②中位數③平均數④極差.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】試題解析:過點B作直線AC的垂線交直線AC于點F,如圖所示.∵△BCE的面積是△ADE的面積的2倍,E是AB的中點,∴S△ABC=2S△BCE,S△ABD=2S△ADE,∴S△ABC=2S△ABD,且△ABC和△ABD的高均為BF,∴AC=2BD,∴OD=2OC.∵CD=k,∴點A的坐標為(,3),點B的坐標為(-,-),∴AC=3,BD=,∴AB=2AC=6,AF=AC+BD=,∴CD=k=.【點睛】本題考查了反比例函數圖象上點的坐標特征、三角形的面積公式以及勾股定理.構造直角三角形利用勾股定理巧妙得出k值是解題的關鍵.12、2.5秒.【解析】
把此正方體的點A所在的面展開,然后在平面內,利用勾股定理求點A和B點間的線段長,即可得到螞蟻爬行的最短距離.在直角三角形中,一條直角邊長等于5,另一條直角邊長等于2,利用勾股定理可求得.【詳解】解:因為爬行路徑不唯一,故分情況分別計算,進行大、小比較,再從各個路線中確定最短的路線.(1)展開前面右面由勾股定理得AB=cm;(2)展開底面右面由勾股定理得AB==5cm;所以最短路徑長為5cm,用時最少:5÷2=2.5秒.【點睛】本題考查了勾股定理的拓展應用.“化曲面為平面”是解決“怎樣爬行最近”這類問題的關鍵.13、3.【解析】試題分析:分別根據零指數冪,負指數冪的運算法則計算,然后根據實數的運算法則求得計算結果.原式=4-1=3.考點:負整數指數冪;零指數冪.14、有兩個不相等的實數根.【解析】分析:先求一元二次方程的判別式,由△與0的大小關系來判斷方程根的情況.詳解:∵a=2,b=3,c=?2,∴∴一元二次方程有兩個不相等的實數根.故答案為有兩個不相等的實數根.點睛:考查一元二次方程根的判別式,當時,方程有兩個不相等的實數根.當時,方程有兩個相等的實數根.當時,方程沒有實數根.15、①②③【解析】
(1)由已知條件易得∠A=∠BDF=60°,結合BD=AB=AD,AE=DF,即可證得△AED≌△DFB,從而說明結論①正確;(2)由已知條件可證點B、C、D、G四點共圓,從而可得∠CDN=∠CBM,如圖,過點C作CM⊥BF于點M,過點C作CN⊥ED于點N,結合CB=CD即可證得△CBM≌△CDN,由此可得S四邊形BCDG=S四邊形CMGN=2S△CGN,在Rt△CGN中,由∠CGN=∠DBC=60°,∠CNG=90°可得GN=CG,CN=CG,由此即可求得S△CGN=CG2,從而可得結論②是正確的;(3)過點F作FK∥AB交DE于點K,由此可得△DFK∽△DAE,△GFK∽△GBE,結合AF=2DF和相似三角形的性質即可證得結論④成立.【詳解】(1)∵四邊形ABCD是菱形,BD=AB,∴AB=BD=BC=DC=DA,∴△ABD和△CBD都是等邊三角形,∴∠A=∠BDF=60°,又∵AE=DF,∴△AED≌△DFB,即結論①正確;(2)∵△AED≌△DFB,△ABD和△DBC是等邊三角形,∴∠ADE=∠DBF,∠DBC=∠CDB=∠BDA=60°,∴∠GBC+∠CDG=∠DBF+∠DBC+∠CDB+∠GDB=∠DBC+∠CDB+∠GDB+∠ADE=∠DBC+∠CDB+∠BDA=180°,∴點B、C、D、G四點共圓,∴∠CDN=∠CBM,如下圖,過點C作CM⊥BF于點M,過點C作CN⊥ED于點N,∴∠CDN=∠CBM=90°,又∵CB=CD,∴△CBM≌△CDN,∴S四邊形BCDG=S四邊形CMGN=2S△CGN,∵在Rt△CGN中,∠CGN=∠DBC=60°,∠CNG=90°∴GN=CG,CN=CG,∴S△CGN=CG2,∴S四邊形BCDG=2S△CGN,=CG2,即結論②是正確的;(3)如下圖,過點F作FK∥AB交DE于點K,∴△DFK∽△DAE,△GFK∽△GBE,∴,,∵AF=2DF,∴,∵AB=AD,AE=DF,AF=2DF,∴BE=2AE,∴,∴BG=6FG,即結論③成立.綜上所述,本題中正確的結論是:故答案為①②③點睛:本題是一道涉及菱形、相似三角形、全等三角形和含30°角的直角三角形等多種幾何圖形的判定與性質的題,題目難度較大,熟悉所涉及圖形的性質和判定方法,作出如圖所示的輔助線是正確解答本題的關鍵.16、.【解析】
解:根據從C、D、E、F四個點中任意取一點,一共有4種可能,選取D、C、F時,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;故答案為.【點睛】本題考查概率的計算及等腰三角形的判定,熟記等要三角形的性質及判定方法和概率的計算公式是本題的解題關鍵.三、解答題(共8題,共72分)17、(1)(2)【解析】
試題分析:首先根據題意進行列表,然后求出各事件的概率.試題解析:(1)P(兩次取得小球的標號相同)=;(2)P(兩次取得小球的標號的和等于4)=.考點:概率的計算.18、證明見解析.【解析】試題分析:根據矩形的性質得出求出根據平行四邊形的判定得出四邊形是平行四邊形,即可得出答案.試題解析:∵四邊形ABCD是矩形,∴∴∴四邊形是平行四邊形,點睛:平行四邊形的判定:有一組對邊平行且相等的四邊形是平行四邊形.19、7.3米【解析】
:如圖作FH⊥AE于H.由題意可知∠HAF=∠HFA=45°,推出AH=HF,設AH=HF=x,則EF=2x,EH=x,在Rt△AEB中,由∠E=30°,AB=5米,推出AE=2AB=10米,可得x+x=10,解方程即可.【詳解】解:如圖作FH⊥AE于H.由題意可知∠HAF=∠HFA=45°,∴AH=HF,設AH=HF=x,則EF=2x,EH=x,在Rt△AEB中,∵∠E=30°,AB=5米,∴AE=2AB=10米,∴x+x=10,∴x=5﹣5,∴EF=2x=10﹣10≈7.3米,答:E與點F之間的距離為7.3米【點睛】本題考查的知識點是解直角三角形的應用-仰角俯角問題,解題的關鍵是熟練的掌握解直角三角形的應用-仰角俯角問題.20、15cm【解析】試題分析:設細線OB的長度為xcm,作AD⊥OB于D,證出四邊形ANMD是矩形,得出AN=DM=14cm,求出OD=x-9,在Rt△AOD中,由三角函數得出方程,解方程即可.試題解析:設細線OB的長度為xcm,作AD⊥OB于D,如圖所示:∴∠ADM=90°,∵∠ANM=∠DMN=90°,∴四邊形ANMD是矩形,∴AN=DM=14cm,∴DB=14﹣5=9cm,∴OD=x﹣9,在Rt△AOD中,cos∠AOD=,∴cos66°==0.40,解得:x=15,∴OB=15cm.21、(1)見解析;(2).【解析】分析:(1)連結OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根據垂徑定理的推理得OP⊥AD,AE=DE,則∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根據菱形的性質得∠1=∠2,所以∠2+∠OAP=90°,然后根據切線的判定定理得到直線AB與⊙O相切;(2)連結BD,交AC于點F,根據菱形的性質得DB與AC互相垂直平分,則AF=4,tan∠DAC=,得到DF=2,根據勾股定理得到AD==2,求得AE=,設⊙O的半徑為R,則OE=R﹣,OA=R,根據勾股定理列方程即可得到結論.詳解:(1)連結OP、OA,OP交AD于E,如圖,∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°.∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°.∵四邊形ABCD為菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,∴直線AB與⊙O相切;(2)連結BD,交AC于點F,如圖,∵四邊形ABCD為菱形,∴DB與AC互相垂直平分.∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,∴DF=2,∴AD==2,∴AE=.在Rt△PAE中,tan∠1==,∴PE=.設⊙O的半徑為R,則OE=R﹣,OA=R.在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,∴R=,即⊙O的半徑為.點睛:本題考查了切線的判定定理:經過半徑的外端且垂直于這條半徑的直線是圓的切線.也考查了菱形的性質和銳角三角函數以及勾股定理.22、(1)7x1+4x+4;(1)55.【解析】
(1)根據整式加法的運算法則,將(4x1+5x+6)+(3x1﹣x﹣1)即可求得紙片①上的代數式;(1)先解方程1x=﹣x﹣9,再代入紙片①的代數式即可求解.【詳解】解:(1)紙片①上的代數式為:(4x1+5x+6)+(3x1﹣x﹣1)=4x1+5x+6+3x1-x-1=7x1+4x+4(1)解方程:1x=﹣x﹣9,解得x=﹣3代入紙片①上的代數式得7x1+4x+4=7×(-3)2+4×(-3)+4=63-11+4=55即紙片①上代數式的值為55.【點睛】本題考查了整式加減混合運算,解一元一次方程,代數式求值,在解題的過程中要牢記并靈活運用整式加減混合運算的法則.特別是對于含括號的運算,在去括號時,一定要注意符號的變化.23、(1)12(2)y=(0<x<5)(3)或【解析】試題分析:(1)過點A作AH⊥BC于點H,根據cosB=求得BH的長,從而根據已知可求得AH的長,BC的長,再利用三角形的面積公式即可得;(2)先證明△BPD∽△BAC,得到=,再根據,代入相關的量即可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電控無線開關技術在未來智能汽車設計中的應用前景
- 2025年度電子商務公司供應鏈金融合作協(xié)議
- 二零二五年度房屋出租免責協(xié)議及租客個人隱私保護條款
- 二零二五婚前財產放棄婚后財產分配與家庭責任承擔協(xié)議
- 2025年度酒水行業(yè)安全責任保險合同
- 二零二五年度餐廳員工勞務及餐飲行業(yè)食品安全追溯合同
- 2025年度特殊教育學校教師崗位聘用合同書
- 二零二五年度文化創(chuàng)意股份合作協(xié)議書模板
- 2025至2030年中國純糧基礎酒數據監(jiān)測研究報告
- 科技產品的網絡直播銷售技巧與策略研究
- 2025年中國國投高新產業(yè)投資集團招聘筆試參考題庫含答案解析
- 天然氣門站操作規(guī)程
- 東莞虎門架空線路拆除施工方案
- 尿液結晶教學課件
- 繪本《你很特別》
- 茶葉揉捻機總體設計方案的擬定
- 律師事務所主任在司法行政工作會議上的發(fā)言稿
- 初中三角函數計算題100道
- 蘇州大學應用技術學院財務管理
- 2022年新目標英語七年級期末考試質量分析
- 北師大版五年級數學下冊導學案全冊
評論
0/150
提交評論