版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
JournalofPhysics:ConferenceSeries
PAPER?OPENACCESS
ComparativeStudyofEnergyStorageSystems(ESSs)
Tocitethisarticle:LIMAsrietal2021J.Phys.:Conf.Ser.1962012035
Viewthe
articleonline
forupdatesandenhancements.
Youmayalsolike
FoodCodeBreaker(FCB)–Developing
theMulti-LingualFoodCodeTranslation
AndroidApplicationUsingMulti–Options
CodeReaderSystem
SharminiAbdullah,MohamedElshaikh,MuhammadBazliMahmoodetal.
OptimizationofAnthraquinoneDye
WastewaterTreatmentusingOzoneinthe
PresenceofPersulfateIoninaSemi-
batchReactor
NAMHussin,CZAAbidin,Fahmietal.
Mechanical,DurabilityAndRheology
PropertiesOfUltraHighPerformance
Concrete(UHPC)WithLowCement
Content
MZAMZahid,BHABakar,FMNazrietal.
ThiscontentwasdownloadedfromIPaddress53on09/04/2024at00:29
The1stInternationalConferenceonEngineeringandTechnology(ICoEngTech)2021 IOPPublishing
JournalofPhysics:ConferenceSeries
1962(2021)012035
doi:10.1088/1742-6596/1962/1/012035
ComparativeStudyofEnergyStorageSystems(ESSs)
LIMAsri,WNSFWAriffin,ASMZain,JNordinandNSSaad
FacultyofElectronicEngineeringTechnology,UniversitiMalaysiaPerlis,02600Arau,Malaysia
E-mail:
lyana6060@,
suryanifiruz@.my,
ainisyuhada@.my,
junita@.my,
nazatul@.my
Abstract.Renewableenergy(RE)resourceshaveshownimpressivegrowthglobally,asthesesourcesdonotprovideenoughamountthatisreadilyadaptabletoconsumerneeds,itcanrarelyallowanimmediateresponsetodemand.However,intermittencyinREsupply(RES)sources,combinedwithfluctuatingdemandshiftsovertime,hascausedahighriskofsustainingsystemreliabilitytoprovidecustomerswithsufficientsupply.TheexcessenergyproducedbyRESscanbestoredinamyriadofwaysandusedlaterduringshortagesorintermittentperiods.ThisstudywascarriedouttounderstandhowtoprovideenergystoragetocreateafuturebuiltenvironmentwhereREsystemsplayanessentialrole.Therearedifferenttypesofastoragesystemwithdifferentcharacteristic,parameters,andcosts.Thispaperhighlightsthechronology,classification,characteristic,comparison,andassessmentofESSsandenergystoragesystemsdeployment.
Introduction
Engineersandpolicymakersareincreasinglyfocusingonenergystorageduetorisingattentionabouttheenvironmentalconsequencesoffossilfuelsandtheefficiencyanddurabilityofenergygridsworldwide.Infact,energystoragecanhelpresolvetheintermittentnatureofwindpowerandsolar;insomeinstances,itcanalsorespondquicklytosignificantdemandchanges,makethegridreactingquicklyandminimizetheneedtoinstallbackuppowerplants.Anenergystoragefacility’sefficiencyisdeterminedbyhowrapidlyitcanrespondtodemandchanges,itstotalcapacitytostoreenergy,therateofenergylostinthestorageprocess,andhoweasilyitcanberecharged.
SolarPVonlysuppliespowerthroughoutthedaywiththepeak.Totalproductionisdifferenteveryday.Windproductionisunpredictablebutcanbedistributed24hoursperday.However,averageperformancecanvarydramatically;forexample,inoneregionofGermanyalone,therecanbealmost20GWchangeoveraday[1].Intermittentgrowthinrenewableenergyleadstochallengesinmaintainingthebalancewithinsupplyanddemand.Theclosureofconventionalpowerplantsdecreasesthefrequencycontrolcapability,whichiswhyenergystorageisneeded.Energystoragecanalsosatisfytheneedforelectricityatpeaktimes,i.e.,whenairconditionersblastduringsummertimeorwhenhouseholdsturnonthelightsandappliancesatnight.Aspowerplantsneedtoscaleupproductiontomeettheincreasedenergyuseduringpeaktimes,electricitybecomesmorecostly.Energystorageprovideshighergridefficiencybecauseutilitiescanpurchaseelectricityatoff-peakhourswhenenergyischeapandsellittothegridwhenitis
moreindemand[2].
ContentfromthisworkmaybeusedunderthetermsoftheCreativeCommonsAttribution3.0licence.Anyfurtherdistributionofthisworkmustmaintainattributiontotheauthor(s)andthetitleofthework,journalcitationandDOI.
PublishedunderlicencebyIOPPublishingLtd 1
The1stInternationalConferenceonEngineeringandTechnology(ICoEngTech)2021 IOPPublishing
JournalofPhysics:ConferenceSeries
1962(2021)012035
doi:10.1088/1742-6596/1962/1/012035
PAGE
10
OverviewofEnergyStorageSystems
ChronologicalorderofEnergyStorageSystems
Theprocessesofelectro-chemicalsenergystoragestartedtodevelopveryrapidlyinthelate19thcentury.In1749,AmericanscientistBenjaminFranklinfirstusedtheword”battery”ashewasdoingexperimentswithelectricityusingasetoflinkedcapacitors.TheItalianphysicistAlessandroVoltainventedthefirstrealbatteryin1800[3].
Table1.ChronologicalorderofESS
Year
Types of
battery
Description
Ref
1800
Voltacell
TheinventionofthefirstbatteryledtotheVoltacell,whichused
abrinesolutionasanelectrolyteandhadalternatingcopperandzincdiscsdividedbycardboard.
[7,8]
1836
Danielcell
Regularlyidentifiedasazinc-copperbatterythattakesadvantage
ofaporousbarrierbetweentwoelectrolytes,theVoltacelldevelopedintotheDanielcell.JohnFredericDaniell,aBritishchemist,inventedtheDanielCell.
[9]
1866
Leclanche
cell
DanielcelltransformsintoaLeclanchecellinventedbyaFrench
engineercontaininganammoniumchlorideconductingsolution:theelectrolyte,anegativezincterminalandapositivemanganesedioxideterminal.
[10]
1859
Lead-acid
Thefirstrechargeablebatterybasedonlead-acidwasinventedby
theFrenchphysicianGastonPlant′e,astilluseddevice.Theywereallprimarybatteriesuntilthen,meaningtheywerenottypicallyrechargeable.
[7,8]
1899
Nickel–
cadmium(NiCd)
Thenickel-cadmium(NiCd)batteryusingnickelasthepositive
electrode(cathode)andcadmiumasthenegativeelectrode(anode)wasinventedbySweden’sWaldemarJungner.
[11]
1901
Nickel-iron
(NiFe)
ThomasEdisonreplacedcadmiumwithiron,whichwascalled
nickel-iron(NiFe).
[8,11]
1967
Nickel–metal
hydride,NiMH
Nickel-metal-hydridedevelopmentbeganin1967.Itactsasa
substituteforNiCdbecauseitonlyhasmildtoxicmetalsandprovideshigherspecificenergy.
[12]
1980
Li-ion
AmericanphysicistJohnBannisterGoodenoughinventedthe
lithium-ionnervoussystem.
[13]
1980
Lithium-
polymer
Thelithium-polymerbatteryinventioncameinthe1980s.Sony
integratedGoodenough’scathodeandacarbonanodeintotheworld’sfirstcommerciallithium-ionrechargeablebatteryin1991.
[14]
1954-
latest
Solarfuel
Solarfuels,inspiredbyenvironmentalconcerns,haverecently
gainedinterest.Thisisstillunderdevelopmentandstudy.Inthe1950s,BellLaboratoriesdiscoveredthatsemiconductingmaterialsweremorepowerfulthanselenium,suchassilicon.Theysucceededinmakingasolarcellthatwas6percentefficient.ThebrainsbehindthesiliconsolarcellatBellLabswereinventorsDarylChapin,CalvinFullerandGeraldPearson.
[15]
ThesefirstmeasureswereidentifiedwiththenamesofLuigiGalvani(1737-1798)andAlessandroContediVolta(1745-1827),whichremaininhistorythroughthewordsweusetoday:”galvanicelement”and”volt”.Galvanifoundthatifdeathmeetsvariousmetals,afroglegbeginstomove.Onthecontrary,Voltastudiedtheoutcomesobtainedwhencertain
saltsolutionsareinsertedintovariousmetals.Thelead/acid/leaddioxide(lead-acidbattery)mechanismwillnotbefoundwithoutthesetests[4].Table1showsthechronologyoftheenergystoragesystem.
ComparisonandcharacteristicofEnergyStorageSystem
Therefore,itiscrucialtocriticallyanalyzethefundamentalcharacteristicsofESSstocreatebenchmarksforselectingthebesttechnology.TheseESSscanalsobedefinedbytheirtechnicalspecifications,i.e.,maxpowerrating,dischargetime,energydensityandefficiency.Table2concentratesinESSscurrentlyproficientofgivingcriticalstoragecapacitiesofatleast20MW.AglossaryoftechnicaldataESSsisgiventohelpanybeginnerclearlyunderstandthecharacteristics[5,6].
Table2.ChronologicalorderofESS
MaxPower
Rating(MW)
Discharge
time
Max cycles
orlifetime
Energy
density(watt-hourperliter)
Efficiency
Pumpedhydro
3,000
4h-16h
30-60years
0.2-2
70-85%
Compressedair
1,000
2h-30h
20-40years
2-6
40-70%
Moltensalt
150
hours
30years
70-210
80-90%
Li-ionbattery
100
1min-8h
1,000-10,000
years
200-400
85-95%
Lead-acid
100
1min-8h
6-40years
50-80
80-90%
Flowbattery
100
hours
12,000-14,000
years
20-70
60-85%
Hydrogen
100
min-week
5-30years
600(atbar)
25-45%
Flywheel
20
secs-mins
20,000-
100,000years
20-80
70-95%
Maxpowerrating(MWorkW):Maxpowerratingforastoragesystemdeterminestherateofenergystorageinthestoragemedium.Itisalsocommonlydeterminedasaveragevalueandapeakvaluethatisoftenusedtoindicatemaximumpower,Pmax(W).
Dischargetime(energyperunit):Theamountoftimetakentofullydischargeenergyatitsratedpowerbythestoragesystemiscalleddischargetime.Themaximum-powerforthedurationofthedischarge,τ(s)=Wst/Pmax,whereWstistotalenergystoredandPmaxismaximumdischargepower.
Maxcycles/Lifetime(cycles/years):Thelifetimeforastoragesystemistoestimateitsperformanceandbespecifiedasthenumberofyearsaccordingtoitsratedcapacityandratedpower.
Energydensity(kWh/L):Theamountofenergythatcanbecontainedinthestoragematerialperunitvolumeisreferredtoastheenergydensity.
Efficiency(%):TheratiobetweenenergythattheESSdischargedandtheamountofenergycontainedinitisreferredtoastheESSdischargeefficiency.Theratioofreleasedenergyandstoredenergyisn=Wut/Wst,whereWutisusablereleasedenergyandWstistotalenergystored.
ClassificationofESSs
Thegrowingneedforenergystoragehaspushedintoanever-endingefforttofindnewstoragesystemsolutionsthataremoreeffectiveandcatertospecificrequirements.Therearemanytypes
ofESStechnologiescoexistingandcanbeclassifiedonthebasisoftheirparticularfunctions,responsetime,theformofenergystored,storagedurationandetc.,[5].Theenergystoragesystemmaybeusedforarangeofapplications.Someofthemmaybepreciselyselectedforaparticularapplication.Ontheotherhand,someothersaretheframeworkinquestioninabroaderframework.
TheESSclassificationisbroadlydeterminedbasedontheformofconvertedenergy.Energycanbeconvertedeitherintheformofthermal,chemical,mechanical,orelectrochemicalenergyormagneticorelectricalfields.Figure1illustratestheESS’sclassification.
Figure1.Theclassificationofenergystoragesystems.
ComparisonandAssessmentofESSs
ManystudieshavebeenperformedspecificallyforthepurposeofdrawingupathoroughcomparisonbetweenthevarioustypesofESS.
Comparisonbetweenpowerdensityandenergydensity
Figure2showsthecomparisonofESStechnologiesbetweenenergydensityandpowerdensity.Whenthedensityofenergyandpowerismoresignificant,thestoragesystem’svolumeislower.Onthetopright,highlydenseESStechnologieswhichareidealformobileapplications.Theextensiveandhigh-volumestoragesystemislocatedatthebottomleft.Flowbatteries,CAESandPHS,havealowenergydensityandareextensivearea.Thevolumeofitconsumesmorestoragesystems.Ontheotherhand,Li-ionbatterieshavealargeenergydensityandahigh-powerdensity,soLi-ioniscurrentlyusedinmanyapplications.
Figure2.ComparingtheESStechnologiesbetweenpowerdensityandenergydensity[5,16].
Comparisonbetweenthesystempowerratinganddischargetime
Figure3showstheapplicationoftheESSsgenerallyclassifiedintolarge,medium,andsmallscalesbasedonthedischargetimeatratedpowerandpowerrating.
Electrochemicalstoragesystemssuchaslithium(Li-ion),lead-acidandNaSbatteriesareprimarilyappropriateforapplicationswithamediumdischargetimeofminutestohours.Forashortdischargetimeatratedpowerapplications,alltechnologiesforhigh-powerstoragesuchasFlywheels,SupercapacitorandSMESaresuitable.PHSandCAESarelocatedbetweenmediumdischargetimesofstoragesystemandlargescalefordischargetimesatratedpower.
ESSscurrentlyavailableforuseinapplicationsinvolvingpowerqualityareSupercapacitors,Ni-Cd,lead-acidbatteryandLi-ionbattery,andFlywheelsalsoappeartobeapromisingsystemforthoseapplications.
Comparisonoflifeexpectancyandefficiencyofenergy
Figure4representsthecomparisonbetweenlifeexpectancyandenergyefficiencyofESSs.Beforechoosingastoragetechnology,thistwo-parameterisvitaltoconsider,amongothers,asitaffectsthetotalstoragecosts.
BothESShigh-powertechnologies,i.e.,FlywheelsandECCapacitors,aredistinguishedbytheirperformance,rangingfrom90-95%and84-97%,respectively.Currently,diabaticCAESsystemshavealowefficiencyoflessthan55%.However,thenewadiabaticCAESplantispresumedtoachieveanefficiencyofaround70%[16].Li-ionbatterieshavethehighestefficiencyoftheelectrochemicalstoragesystem,estimatedtobeover90%oreven97%.PHSsystemswillrunat70-87%efficiency,andtheuseofanadjustablespeedmachinecanincreaseefficiencyinthefuture.
LifeexpectancycanbegiveneitherincyclesoryearsforESSs.Intraditionalbattery
Figure3.ComparisonofESSsregardingtheratingofthepowersystemandtimeofdischargeatratedpower[5,17].
Figure4.Comparisonbetweenlifeexpectancyandenergyefficiency[17].
technology,lead-acidbatteriesintheorderof2000cycleshavethelongestcyclelife.however,morecyclescanbereachedbyLi-onandNASthanlead-acidbatteries.CAES,PHSandflywheelsaretechnologieswithaverylong-lifecycleofbetween10,000and30,000cycles,while
ECCapacitorsareabout100,000cycles[5].
ComparisonoftheinvestmentcostofESSs
TheinvestmentcostsofESSsarecomparedinFigure5.Storage-relatedinvestmentcostsareasignificanteconomicparameterandimpacttheoverallcostofenergyproduction.Hence,certaintypesofstoragesystemscanonlybecomeprofitableifsuppliedwithacertainminimumofresources.Toachieveaprecisecostanalysis,thetotalcostofthesystemmustbeappraised.
Figure5.ComparisonbetweenCapitalCostperUnitEnergyandCapitalCostperUnitPower[6].
Concerningthecapitalcostperunitofenergy,ECcapacitorsandhigh-powerflywheelshavethegreatestinvestmentcostofsomethousand/kWh.Atthesametime,metal-airbatteriesarethelower-pricedstorageoption.CAESalsohaveameagrecostforthestoragesystem.Long-durationflywheels,Li-ionandthezinc-airbatteryaremost-costlytechnologiesinthecapitalcostperunitpower.Apartfromlong-durationECcapacitorsandhigh-powerflywheels,high-powerECcapacitorsarethemostaffordable.
Datain2018andpredictionin2025forcostandparameters(powerconversionsystem,capitalcost–energycapacity,thebalanceofplant,constructionandcommissioning)rangesbytechnologiesisshowninFigure6[18].
Comparisonbasedonspecificpowerandenergy
Betweentechnologiesforhigh-power,thecapacitorhasthehighestspecificpowerofmorethan100,000(W/kg),whileTESisthelowestspecificpowerwhichis10-30(W/kg)[5].Intherangeof800-10,000(Wh/kg),thefuelcellexhibitsexceptionallyhighspecificenergy.Higherspecificenergygivesanimpactonstorageweight.Figure7showsthecomparisonbetweenspecificpowerandenergy.
Figure6.Overviewofthe2018dataand2025forecastscompiledbytechnologyforparameterranges[18].
Figure7.Comparisonbetweenspecificpowerandenergy.
DeploymentofESSs
Forthefirst-everintenyears,theglobalstoragemarketisdiminishing.In2019,electricitysystemsworldwidehadadded2.9GW’sstoragecapacity,nearly30%lowerthanin2018.Thereasonsbehindthisbottom-linemarkhowmuchstorage,presentinjustafewkeymarketsandprofoundlyreliantbasedonpolicysupport,continuesasanearly-stagetechnology.However,ifadequatelydeployed,energystorageprovidessystemoperatorswithflexibleandquickresponsecapabilitytoefficientlymanagegenerationandloadvariability.ESSshaverecentlyundergoneanaccelerateddecreaseincost,reflectingthelearningcrescentsseenoverthepastdecadefromwindandsolargeneration.
Figure8.The2013-2019annualdeploymentofESSbythecountry[19].
Theinstallmentofenergystoragehasstartedtogainmarketpopularityoverthelastfewyears.Figure8showstheIEA’scurrentdata,whichillustratesthestrideofbatteryenergystoragedeployments,exceptin2019.2016isthefirstyearinwhichtheannualdeploymentforenergystoragehasreached1GW.InKorea,annualdeploymentsdecreasedby80percentafterthe2018reportingyearwhenKoreaaccountedforone-thirdofallinstalledcapacityglobally.Thedecreasearosefromincreasingconcernin2018overmultiplefiresatstorageplantsinagrid-scale.Whilealarge-scalereviewofthefiresandsafetymeasureswascarriedout,in2019,fivemorefiresbrokeout.Theco-locationofREgenerationfacilitieswithenergystorageassets,whichhelpsstabilizegenerationandassuresmorerobustcapacityduringhighdemandtimes,hasbeenacriticaldriverofenergystoragegrowth.Large-scaleauctionwitha1.2GWofsolar-plus-storage,Indiaexpresslystartedrewardingthisapplicationin2019,requirethestoragecapacityfor50%oftheinstalledgeneration.Singaporehasdeclaredagoalfor2025,whichis200MWofstorage.IHSMarkit’sEnergyStorageBusiness,aglobalinformationproviderheadquarteredinLondon,recordsglobalinstallationsrisingbymorethan5GWin2020[20].TheothersubstantialpotentialimplementationofESSisinthemobilecommunicationarea.Thestudies
in[21–28]considercloudradioaccessnetwork(C-RAN),wheretheremoteradioheads(RRHs)areequippedwithrenewableenergyresourcesandcantradeenergywiththegrid.However,intheirproposedsystems,RRHsarenotinstalledwithfrequentlyrechargeablestoragedevices.ESSscanbeinstalledatthemasterbasestation(MBS)intheC-RANorcanbeemployedattheRRHswiththeadvancementofbatterytechnologies.Theselfenergystoragemanagementisexpectedtocontrolunequallocalrenewableenergygenerationtomatchtheenergyrequestbyreceivingterminalsthatalwayschangeovertime.
Conclusion
ViewingthepreviousworkonESSsandthereliabilityofthepowergrid,thispapercoversagreatdealofcriticalknowledgeonESSs.TheworldisobligedtobeenticedfurthertowardsESSstomovetowardsrenewableenergysources,whichwillneedafullunderstandingofthistechnology’sperspectives.Severaltypesoftechnicalparametershavebeencompared,whichwillencourageaspecifictypebasedonthemainspecifications.AbriefinsighthasbeenpresentedabouttheannualdeploymentofESS.ThemostappealingsolutionandlongtermforotherstoragesystemscompetingtodaymightnotalwaysbetheESS.However,thisimpliesthateveniftheflexibleness’sinvestmentsignalsarecurrentlylacking,assessingtheregionalandcountrypotentialwillbeimportantinthelongterm.
References
RolandBerger,“RolandBergyFocus:Businessmodelsinenergystorage,”2017.
A.Zablocki,“FactSheet:EnergyStorage(2019)—WhitePapers—EESI,”EnvironmentalandEnergyStudyInstitute,2019.[Online].Available:h
ttps:///papers/view/energy-storage-
2019.[Accessed:09-Jul-2020].
T.C.JoseAlarcoAndPeterTalbot,“Thehistoryanddevelopmentofbatteries,”pp.1–5,2018.
E.Danila,“HistoryoftheFirstEnergyStorageSystems,”Conference,2010.[Online].Available:h
ttps:///publication/271371039
HISTORYOFTHEFIRSTENERGYSTORAGESYSTEMS.[Accessed:24-Jan-2021].
E.Hossain,H.M.R.Faruque,M.S.H.Sunny,N.Mohammad,andN.Nawar,“Acomprehensivereviewonenergystoragesystems:Types,comparison,currentscenario,applications,barriers,andpotentialsolutions,policies,andfutureprospects,”Energies,vol.13,no.14.MDPIAG,01-Jul-2020.
H.Ibrahim,A.Ilinca,andJ.Perron,“Energystoragesystems-Characteristicsandcomparisons,”RenewableandSustainableEnergyReviews,vol.12,no.5.Pergamon,pp.1221–1250,01-Jun-2008.
M.S.Whittingham,“History,evolution,andfuturestatusofenergystorage,”inProceedingsoftheIEEE,2012,vol.100,no.SPLCONTENT,pp.1518–1534.
BatteryUniverisity,“InformationontheInventionoftheBattery-BatteryUniversity,”2016.[Online].Available:
/learn/article/when-was-the-battery-invented.
[Accessed:24-Jan-2021].
X.Dong,Y.Wang,andY.Xia,“Re-buildingDaniellcellwithaLi-ionexchangefilm,”Sci.Rep.,vol.4,2014.
T.E.ofE.”GeorgesL.E.B.Britannica,“GeorgesLeclanch′e—Frenchengineer—Britannica.”[Online].Available:h
ttps:///biography/Georges-Lec
lanc
he-ref272622.
[Accessed:24-Jan-2021].
BatteryAssociationofJapan,“Thehistoryofthebattery4)Thelead-acidbattery(secondarybattery),”2015.[Online].Available:
http://www.baj.or.jp/e/knowledge/history03.html.
[Accessed:24-Jan-2021].
I.Buchmann,“Nickel-basedBatteriesInformation,”Batteryuniversity,2011.[Online].Available:/learn/article/nickel-based-batteries.[Accessed:24-Jan-2021].
N.O.T.EnoughandF.O.R.Goodenough,“Themanwhobroughtusthelithium-ionbatteryattheageof57hasanideaforanewoneat92,”pp.1–15,2015.
TANKITHOONG,“Historyoftherechargeablebattery—TheStar.”[Online].Available:h
ttps://.m
y/tec
h/tech-news/2016/01/25/history
oftherechargeablebattery.[Accessed:24-Jan-2021].
ElizabethChuandD.LawrenceTarazano,“ABriefHistoryofSolarPanels—Sponsored—SmithsonianMagazine.”[Online].Available:h
ttps:///sponsored/brief-history-solar-panels-
180972006/.[Accessed:31-Jan-2021].
A.Chatzivasileiadi,E.Ampatzi,andI.Knight,“Characteristicsofelectricalenergystoragetechnologiesandtheirapplicationsinbuildings.”
M.S.GuneyandY.Tepe,“Classificationandassessmentofenergystoragesystems,”RenewableandSustainableEnergyReviews,vol.75.ElsevierLtd,pp.1187–1197,01-Aug-2017.
K.Mongirdetal.,“EnergyStorageTechnologyandCostCharacterizationReport,”2019
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023年彎曲機粉末冶金制品項目融資計劃書
- 哈佛博弈論課件section
- 遼寧省盤錦市大洼區(qū)2023-2024學年七年級上學期期末考試數(shù)學試卷(含解析)
- 內蒙古包頭市東河區(qū)2023-2024學年八年級上學期期末考試數(shù)學試卷(含答案)
- 養(yǎng)老院老人康復設施維修人員晉升制度
- 《個人納稅籌劃》課件
- 《員工獎勵與津貼》課件
- 《親親小動物主題墻》課件
- 掛靠租賃合同(2篇)
- 2024年牛羊養(yǎng)殖行業(yè)協(xié)會會員服務合同范本3篇
- 2023-2024學年高一下學期家長會 課件
- 溯源與解讀:學科實踐即學習方式變革的新方向
- 班克街教育方案
- 護理教育改革與創(chuàng)新研究
- 知識點總結(知識清單)-2023-2024學年人教PEP版英語六年級上冊
- 社會醫(yī)學課件第2章醫(yī)學模式-2024鮮版
- 《囚歌》教學課件
- 2024年日歷(打印版每月一張)
- 民法典銀行培訓課件
- 四年級下冊數(shù)學單位換算題200道及答案
- 技術總監(jiān)年度述職報告
評論
0/150
提交評論