




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
PDHonlineCourseE320(4PDH)
EnergyStorageTechnology
Instructor:LeeLayton,PE
2020
PDHOnline|PDHCenter
5272MeadowEstatesDriveFairfax,VA22030-6658
Phone:703-988-0088
www.PDH
AnApprovedContinuingEducationProvider
www.PDH
PDHonlineCourseE320
www.PDH
?LeeLayton.
Page
PAGE
10
of
NUMPAGES
45
EnergyStorageTechnology
TableofContents
Section Page
Introduction:BottlingElectricity 3
Chapter1–EnergyStorageApplications 9
Chapter2–BatteryEnergyStorage 20
Chapter3–Non-ElectrochemicalStorage 36
Chapter4–Plug-inHybridElectricVehicles 43
Summary 45
Introduction:“BottlingElectricity”
Electricityisoneofthemajorcommoditiesinoureconomyanditisoneofthefewcommoditiesthatneverhadaneconomicalorpracticalmethodtostoretheproduct.
Electricpowerisproducedanddeliveredatvirtuallytheinstantitisdemanded.
Generationandtransmissionsystemsmustbedesignedtomeetthepeakinstantaneous
demandthatmayoccuronthesystem.Consideringalittleextracapacityforreliability,thishasresultedinamodelwherethecapacityfactoroftheentiresystemislessthan50%.Althoughitisdifficulttostoreelectricitydirectly,electricenergycanbestoredinotherforms,suchaspotential,chemical,orkineticenergy.Advancedenergystoragetechnologiesbasedontheseprinciplesareemergingasapotentialresourceinsupportinganefficientelectricitymarket.Thetermenergystoragerefersspecificallytothecapabilityofstoringenergythathasalreadybeengeneratedaselectricityandcontrollablyreleasingitforuseatanothertime.
Onlyabout2.5%ofthetotalelectricpowerdeliveredintheUnitedStatespassesthroughenergystorage,almostallofwhichispumpedhydroelectricstorage.Therestructuringoftheelectricityindustry,alongwithincreasedrequirementsforpowerreliabilityandquality,hasmadeutility-scaleenergystorageasubjectofcurrentinterest.
Althoughthepresent-dayelectricgridoperateseffectivelywithoutstorage,cost-effectivewaysofstoringelectricalenergycanhelpmakethegridmoreefficientandreliable.Electricenergystorage(EES)canbeusedtoaccumulateexcesselectricitygeneratedatoff-peakhoursanddischargeitatpeakhours.Thisapplicationcouldyieldsignificantbenefitsincludingareducedneedforpeakgenerationandreducedstrainontransmissionanddistributionnetworks.energystoragecanalsoprovidecriticallyimportantancillaryservicessuchasgridfrequencyregulation,voltagesupport,andoperatingreserves,therebyenhancinggridstabilityandreliability.
Technicalapplicationsofenergystorageincludegridstabilization,gridoperationalsupport,powerqualityandreliability,loadshifting,andcompensatingforthevariabilityofrenewableenergysources.Restructuredelectricitymarketsprovideopportunitiesforenergystoragetoparticipateinenergyarbitrageandancillaryservices.
Thefirstapplicationoflarge-scaleenergystorageintheUnitedStatesoccurredin1929,whenthefirstpumpedhydroelectricpowerplantwasplacedintoservice.Pumpingwaterfromalowerelevationtoahigherelevationwasthemostpracticalwaytostorelargeamountsofenergythatcouldthenbereleasedduringperiodsofhigh,orpeak,demand.Thesepowerplantsarestillused
tohelpmanagegridfrequencyandprovidecleanreservegeneration,knownasancillaryservices.Duringa30-yearperiodfromthelate1950stothelate1980s,approximately19,500MWofpumpedhydroelectricstoragefacilitieswerebroughtintoserviceintheUnitedStates.By2000,about3%ofthetotalpowerdeliveredbythenation’sgridwassuppliedthroughtheseenergystoragefacilities.Becauseoftheneedforsignificantelevationchangesinpumpedhydroelectricplantdesigns,thenumberofenvironmentallyacceptablesitesforfuturepumpedhydroelectricfacilitiesislimited.Thesitingofnewplantswillfacethesameobjectionsthatthesitingofnewtransmissionlinesfacestoday.
Anotherenergystoragetechnologyiscompressedairenergystorage(CAES).ACAESdemonstrationpowerplantwasplacedinserviceintheearly1990sandhasproventobeeffective.Undergroundformations,suchassaltdomesanddepletedgasfields,canbeadaptedforusewithCAEStechnology.Thesesystemsappeartobepracticalinapowerrangefromabove100MWuptoseveralthousandMW.
Themostcommonformofenergystorageinusetodayisbasedonbatteries.TheisalargeinstalledbaseofleadacidbatteriesinUPSsystem.TherapidgrowthoftheinformationagehasspawnedtheconstructionofdatacenterstosupporttheInternetandcommunicationscenters.
Thesefacilitiesaresensitivetopowersupplydisruptions,solargebattery-poweredprotectionsystemshavebeenandwillcontinuetobedeployedtoachieveahighlevelofprotection.
Poweringthesetypesofloadscurrentlyaccountsforover1.5%ofthetotalutilitypowerconsumptionintheUnitedStates.
Thereareseveralotherelectrochemicaltechnologiesinuseforelectricbackuppowerapplications.Thesebatterytechnologiesarealsobeinginvestigatedordeployedforutility-scaleapplications.Batterytechnologiesincludelithiumion,sodiumsulfur,zinc-bromine,vanadiumredox,andpolysulfide-bromideredoxflowbatteries,amongothers.
Thetwomainclassesofbatteriesinthisdistributedenergystoragecategoryareflowbatteriesandhigh-temperaturebatteriessuchassodiumsulfurandsodiumnickelchloridebatteries.
Industryexpertshavefoundthat,unlikelead-acidbatteries,thesedevicescancycledailyandhaveusefuloperatinglivesintherangeof10to20years.Thesesystemscanbedesignedforcharge/dischargedurationsuptoeighthoursperday.Allthesedevicesarescaledchemistrieswithnoemissionsandquietoperation.
Flowbatterytechnologyutilizesanactiveelementinaliquidelectrolytethatispumpedthroughamembranelikeafuelcelltoproduceanelectricalcurrent.Thesystem’spowerratingisdeterminedbythesizeandnumberofmembranes,andtheruntime(hours)isbasedonthegallonsofelectrolytepumpedthroughthemembranes.Pumpinginonedirectionproducespowerfromthebattery,andreversingtheflowchargesthesystem.
High-temperaturebatteriesoperateabove250Candutilizemoltenmaterialstoserveasthepositiveandnegativeelementsofthebattery.Thesechemistriesproducebatterysystemswithveryhigh-powerdensitiesthatservewellforstoringlargeamountsofenergy.TheSodium-Sulfurbattery,suchastheunitshownontheright,iscurrentlybeingdeployedintheUnitedStatesbyseverallargeutilitiesindemonstrationprojects.
Otherenergystoragedevicessuchasflywheelsandsupercapacitorsarebeingappliedforpowerqualityapplicationsandfrequencyregulationforutilitiesandotherload-balancingusestoreduceemissionsfromdieselgenerator-powereddevicessuchasportcranes.Forthesesystems,energystorageismeasuredinminutes.
OneenergystoragetechnologythatmaybethefutureofutilityenergystorageisPlug-inHybridElectricVehicles(PHEVs).Theacceptanceofthesevehiclesandtheensuingrateofadoptionbythepublicwilldeterminethetimingoftheirimpactontheoverallpowerdemandoftheutilitygrid.AssumingmostchargingofPHEVsoccursatnight,therelativeimpactonthegridovertimeshouldbepositiveinconjunctionwiththeanticipatedsignificantgrowthofwindenergy.
UncontrolleddaytimeorearlyeveningchargingbyPHEVs,bycontrast,couldposechallengestosystemeconomicsandcapacity,astheextrademandcouldincreasecongestionorpeakuse.
Therearemanybenefitstodeployingenergystoragetechnologiesintothenation’sgrid.Energystoragecanprovide:
Ameanstoimprovegridoptimizationforbulkpowerproduction.
Awaytofacilitatepowersystembalancinginsystemsthathavevariableordiurnalrenewableenergysources.
Facilitationofintegrationofplug-inhybridelectricvehicle(PHEV)powerdemandswiththegrid.
Awaytodeferinvestmentsintransmissionanddistribution(T&D)infrastructuretomeetpeakloadsforatime.
Aresourceprovidingancillaryservicesdirectlytogrid/marketoperators.
Dependingupontheprincipalapplicationoftheenergystoragetechnology,energystoragemaybeviewedasageneration,transmission,distribution,orend-userresource.
PumpedhydroelectricandCAEStechnologiesareconsideredbulkpowerenergystoragesystems.Incontrast,newclassesofbatterieshavebeendevelopedthatareconsideredsuitableforsmallerapplicationsandarereferredtoas“distributed”utilitystoragesystems.(Inthiscontext,theterm“distributed”isusedasadifferentiationfrom“l(fā)argecentralized”energystoragetechnologies,analogoustolarge-centralizedpowerplants.)Thetermdistributedenergystoragemeansdeploymentofthesedevicesclosetoloadcenters,transmissionsystempointsofreinforcement,orrenewablegenerationsources,typicallyinornearutilitysubstations.Inothercontexts,theterm“distributed”denoteslocationondistributionfeedercircuitsoratconsumerpremisesbehindthemeter.
Islanding:Continuingtopoweraportionofagridindependentlyfromtheutilitysource.
Fullintegrationofnewsourcesofenergydemandcoupledwiththeoverallincreaseinelectricityuseisamajorchallengefacingthedesignersoftheelectricgridofthefuture.Energystoragetechnologiesneedtobeexaminedcloselytounderstandwherestoragecanaddvaluetotheoverallelectricityinfrastructure.Examplesofthevalueofenergy
storagetechnologiescouldincludecapitaldeferral,energymaintenanceduringislanding,andbetterutilizationofgenerationincoordinationwiththevariableoutputnatureofrenewableenergygeneration.
Theratioofstorageenergycapacitytocharge/dischargepowerrating,orthedurationoftheenergystoragethatisrequired,variesdependingupontheapplicationandfavorsdifferenttechnologiesaccordingly.Energydensity,cost,efficiencies,andenvironmentalconcernsareadditionalfactorsthataffecttheapplicabilityofdifferenttechnologiestodifferentpurposes.TheelectricvehicleapplicationdrivesmostR&Dforadvancedmaterialstoday,butitshouldbenotedthatitisalsothemostdemandingapplicationandthustheonethatjustifieshighercosts.Inthelongterm,thebestenergystoragetechnologiesforutility-scaleapplicationsmaybedifferentfromthoseusedforelectric-drivevehicles.
Determiningtheamountandoverallvalueofenergystoragethatshouldbeaddedtothegridbeginswithanexaminationofthemarginalcostofgeneratingelectricity.Theelectricpowerindustryrunsatlowcapacityfactors.Thislevelofcapacityhasbeenacceptabletotheindustrybecausegenerationresourceshavetraditionallybeenmorecost-effectivesourcesofcapacitythanenergystorageresources.Thegrowthofrenewableenergywilllikelyleadtoevenlowercapacityfactorsfortraditionalgenerationsources.
ManyofthedriversforaSmartgridarebasedonadesiretoimprovecapacityfactorsbyshiftingthedemandcurvethrougheitherincentivesorcontrols.Beyondsomepointthatremainstobedetermined,thereislikelytobesomepublicresistancetothedegreeofloadshiftingentailedinthedeploymentofdemandresponseprograms.Energystoragetechnologyoffersanotherpathtohelpbalancethesystemtoadaptproductiontodemandwhileimprovingcapacityfactors.
Anotherpositiveaspectoftheimplementationofenergystoragetechnologiesisthepotentialtocaptureandstoreelectricityfromwindenergywhenthereisalackoftransmissioninfrastructure.Forexample,windcurtailmenthasalreadybecomecommoninTexasbecauseofalackoftransmissioncapacitytomovethatpowerfromwesternTexastoloadcentersinotherpartsofthestate.Inmanyregions,includingTexas,transmissionprojectsaremovingforwardtobetterconnectwindpowerplantswithloadcenters,althoughenergystoragetechnologiesmayhavepotentialvalueintheinterim.Inaddition,aswindpowerdeploymentincreases,windoutputmaybegintoexceedelectricitydemandduringcertaintimesoftheyear,whichwouldnecessitatecurtailment.Thisproblemmayalsobeaggravatedbyinflexiblenuclearandcoalpowerplantsthathavelimitedabilitytodecreasetheiroutput,giventhedifficultyofpoweringuporpoweringdowntheselargebaseloadfacilities.
Windisagrowingcontributorofenergy,butonlyasmall,insignificantcontributortoelectricalgeneratingcapacity.Windpower’sintermittency—whichresultsingenerationthatisnotdispatchable—iswelldocumented.Theoutputofawindfarmcanvaryfromzerotothefullratedoutputofthefacility.Thisisanissueevenwithlargewindfarms,whichhavesomeself-compensatingabilitybecausetheyaregeographicallydispersed.Formodernwindturbinefarms,theyearlyaveragecapacityfactor—theportionoftimetheyproducefulloutput—isaround40%.Asthepercentagecontributionofwindgrows,sodoesitseffectonthegrid,creatingproblemsoffrequencystabilizationandsystemreliability.Energystorageoptionscouldbeemployedtosupplementorcompensateforthevariabilityofthewindpower’soutput.
Muchlikewindenergy,photovoltaicenergyisalsoanintermittentsourceofelectricity.Theoutputfromasolararraywillvarywiththelocation,weatherconditions,andtimeofday.Italsovariesthroughouttheday,increasingfrommorningtomiddayanddroppingoffintheafternoon.Inmanycases,photovoltaicenergyproductiondoesnotcoincidentwithlateafternoonsummerpeakdemandsthatmostutilitiesexperience.Thereisalsotheintermittencycausedbypassingcloudcover,whichcanmomentarilyreduceaphotovoltaicarray’soutputtovirtuallyzero.
Energystoragecansmooththeoutputofphotovoltaicsbyfillingtheshoulderperiod—theafternoondrop-offofpowerfromthesun.Itcanalsobuffertheeffectofmomentarypowerlossduetopassingcloudcover.BecausetheoutputfromasolararrayisDC,itdoesnotrequiretheACtoDCconversionthatwindenergyneeds.ThisallowsdirectconnectionofthebatterytothesolarDCbusthroughelectronics,butwithoutAC/DCconversion.Thecapitalcostshouldthereforebelessandtheefficiencyhigherthanthoseofwindpowerconversionequipment.
Inanalyzingenergystoragealternatives,Figure1showsthecurrentcostestimatesforvarioustypesofenergystoragetechnologiesavailabletoday.ExceptforCAES,allotherformsofenergystoragehavenoemissionsassociatedwiththeenergydischargecycle.CAESsystemsburnamixtureofcompressedairandnaturalgastogeneratepower.CAEStechnologyrequiresfuelcostsfordischarging,whicharenotcapturedinFigure1.Ifthesystemoperatedoncompressedairalone,thecostsperkilowatt(kW)wouldbeapproximatelythreetimesgreater.
Figure1
CostEstimatesforselectESSTechnologies
3500
3000
2500
2000
1500
1000
500
0
CAES
Li-Ion
Flywheel
PSH
FlowBattery
NaS
Energystoragetechnologytypescanbedividedintotwocategoriesbasedontheireconomicallypracticalduration:thosewithhoursofruntime,andthosewithminutesofruntime.Currently,flywheelsandbatteriesratedforsmalleramountsofenergyareappearinginthegridtodayforancillaryserviceusesuchasfrequencyregulation.Allotherenergystoragetechnologiescanprovidehoursofenergyruntimeinadditiontouseinancillaryservicessuchasfrequencyregulation.
Chapter1
EnergyStorageApplications
Inthischapterwewilllookattheapplicationsofelectricenergystoragesystemstotheutilitygrid.Wewilllookatthebenefitstothethreesectorsontheutilityindustrywhichare,
Generation
Transmission&Distribution
End-Users
Electricityhastraditionallybeenusedatthetimeatwhichitisgenerated.Itisnotoftenstored,eventhoughenergystoragewouldallowfortheoptimizationofpowergeneration.Currently,theUnitedStateshasadaptedgenerationtomatchpeakload,resultinginlowcapacityfactorsfortheelectricpowerindustry,asmuchofthecapacityisusedinfrequentlytomeetpeakdemand.Theshiftingenerationresourcesfromfossilfuelstorenewableenergyresourcesasasourceofelectricpowerwillaggravatethislowcapacityfactorbecausewindpowerisoftenstrongestattimeswhenelectricdemandislow.Whenusedtolevelizetheproduction/demandmismatchovervarioustimedomains,energystoragetechnologieshaveseveralgenerationapplications.Inaddition,storagealsohastransmissionapplicationsthatimprovetransmissioncapacityandreliability.
Energystorageapplicationsmayofferpotentialbenefitstothetransmissionanddistribution(T&D)systembecauseoftheabilityofmodernpowerelectronics,andsomeelectro-chemistries,tochangefromfulldischargetofullcharge,orviceversa,extremelyrapidly.Thesecharacteristicsenableenergystoragetobeconsideredasameansofimprovingtransmissiongridreliabilityorincreasingeffectivetransmissioncapacity.Atthedistributionlevel,energystoragecanbeusedinsubstationapplicationstoimprovesystempowerfactorsandeconomicsandcanalsobeusedasareliabilityenhancementtoolandawaytodefercapitalexpansionbyaccommodatingpeakloadconditions.
Energystoragecanalsobeusedtoalleviatediurnalorothercongestionpatternsand,ineffect,storeenergyuntilthetransmissionsystemabletodelivertheenergytothelocationwhereitisneeded.
Oneareainwhichenergystoragetechnologiescouldprovidegreatbenefitsisinconjunctionwithrenewableenergyresources.Bystoringenergyfromvariableresourcessuchaswindandsolarpower,energystoragecouldprovidefirmgenerationfromtheseunits,allowtheenergyproducedtobeusedmoreefficiently,andprovideancillarytransmissionbenefits.
Attheend-uselevel,energystoragetechnologiescanbeusedtocapturedistributedrenewablegeneration—photovoltaicsolarorwindpower—andstoreituntilitisneeded,bothforoff-gridandgrid-connectedapplications.Assuch,end-userenergystoragetechnologyapplicationsalsohavethepotentialbenefitofimprovinggridutilization,especiallyifend-userenergystoragecanbecoordinatedwithutilityoperations.Oneexampleofsuchcoordinationistheuseofenergystorageinlargecommercialbuildingstoallowpeakshavinganddemandresponsetooccurwithoutreducingactualbuildingservicesandheating,ventilation,andairconditioning(HVAC).
Apotentialbenefitofanend-userenergystoragetechnologyisvehicle-to-grid(V2G)technology,wherebyplug-inhybridelectricvehicles(PHEVs),withtheaddedcapabilityofdischargingbacktothegrid,areusedtoimprovegridutilization,levelizedemand,andimprovereliability.BecauseexpectationsforPHEVdeploymentaresohigh,thereisgreatinterestintheelectricpowerutilityindustryaboutthepotentialforV2Gtoprovidemanyofthebenefitsofenergystorageatthedistributionandend-userlevel.
Therearealsohigh-valuebenefitstonicheenergystorageapplicationsassociatedwithspecificend-usesectors.Specificindustrialapplicationswillbedevelopedasmegawatt-scaleenergystoragetechnologybecomesprovenandeconomicandthatwillprovideaddedbenefitsofenergystoragetechnologies.
GenerationApplications
Thefollowingisasummaryofafewofthekeyareaswhereelectricenergystoragesystemsmaybenefittheelectricutilitygridfromthegeneratortotheend-user.
Energystoragecanhelpwithgridstabilizationbyassistingwiththegrid’sreturntoitsnormaloperationafteradisturbance.Energystoragecanbeusedtoremedythreeformsofinstability:rotorangleinstability;voltageinstability;andfrequencyexcursions.
Inadditiontostabilizingthegridafterdisturbances,energystoragecanalsobeusedtosupportnormaloperationsofthegrid.Fourtypesofsupportoperationscanbeperformedwithenergystorage,
FrequencyRegulationServices:Energystoragecanbeusedtoinjectandabsorbpowertomaintaingridfrequencyinthefaceoffluctuationsingenerationandload.
ContingencyReserves:Atthetransmissionlevel,contingencyreserveincludesspinning(orsynchronous)andsupplemental(non-synchronous)reserveunits,thatprovidepowerforuptotwohoursinresponsetoasuddenlossofgenerationoratransmissionoutage.
VoltageSupport:Voltagesupportinvolvestheinjectionorabsorptionofreactivepower(VARs)intothegridtomaintainsystemvoltagewithintheoptimalrange.Energystoragesystemsusepower-conditioningelectronicstoconvertthepoweroutputofthestoragetechnologytotheappropriatevoltageandfrequencyforthegrid.
BlackStart:Blackstartunitsprovidetheabilitytostartupfromashutdownconditionwithoutsupportfromthegrid,andthenenergizethegridtoallowotherunitstostartup.Aproperlysizedenergystoragesystemcanprovideblackstartcapabilities,provideditiscloseenoughtoagenerator.
Energystoragecanalsohelptoimprovepowerqualityandreliability.Mostgrid-relatedpowerqualityeventsarevoltagesagsandinterruptionswithdurationsoflessthantwoseconds,phenomenathatlendthemselvestoenergystorage-basedsolutions.
Loadshiftingisanotherareawhereenergystorageisutilizedduringperiodsoflowdemandandreleasingthestoredenergyduringperiodsofhighdemand.Loadsiftingcomesinseveraldifferentforms;themostcommonispeakshaving.Peakshavingdescribestheuseofenergystoragetoreducepeakdemandinanarea.Itisusuallyproposedwhenthepeakdemandforasystemismuchhigherthantheaverageload,andwhenthepeakdemandoccursrelativelyrarely.Peakshavingallowsautilitytodefertheinvestmentrequiredtoupgradethecapacityofthenetwork.Theeconomicviabilityofenergystorageforpeakshavingdependsonseveralfactors,particularlytherateofloadgrowth.
Thissectionfurtherdiscussesthepotentialbenefitsofenergystorageacrossdifferentinfrastructureandtimedomainsandgivessomeindicationsoftheperformancecharacteristicsrequiredbyeachapplicationandtheestimatedeconomicgains.Table1summarizesgenerationapplicationsandtheirbenefits.
Manyofthegenerationservicesthatarepotentialenergystorageapplicationsareexistingenergymarket-definedproducts(e.g.,ancillaryservicesandbalancingenergy),andassuch,marketcostsfortheseservicesarereadilyavailable.Wheremarketsarenotderegulated,theamountofenergystoragecapacitythatcouldbeusedisroughlylinkedtosystemorgeneratorsizes.Inmostcases,theoveralleconomicbenefitscanbeusedtofinanceenergystoragetechnologyprojectsvianormalmarketmechanisms.
Whenbenefitsaredescribedasalleviatingconventionalgenerationcapacitytoprovideenergy,itisbecausetheprovisionofanancillaryservicerequiresthatthegeneratoroperateatlessthanfullcapacity.Thus,theownerofthatgeneratorincursanopportunitycostinthatthemarginsonproductionaredecreased;thiscostisalargepartofthepricingdemandedforancillaryprovision,especiallyatpeakload.Insomecases,generatingunitsthatarenot“inthemarket”andwouldbeuneconomicalareusedtoprovideancillaryservices,generallyathigherprices.
Replacingtheseunitswithenergystoragetechnologieswouldreducethesecostsandtheassociatedemissionsfromtheseunits,potentiallyenablingtheretirementofolderpowerplants.
Someoftheapplicationsarealreadyunderearlycommercialdevelopment;severalmerchantenergystoragedevelopersarepilotingfastenergystoragetechnologiesforuseinsystemregulation.Inaddition,somewinddevelopersthatexperiencecurtailmentduetoinsufficienttransmissioncapacitiesareinvestigatingenergystoragesolutions.
TransmissionandDistributionApplications
Transmissioncapacitytobringremotegenerationtoloadcentersiscurrentlylimited,althoughnewtransmissioninfrastructureisbeingplannedandbuiltinmanyareas.Increasingly,newgenerationmustbesitedfarfrompopulationcenters,whichcanplaceadditionalstrainonthegrid.Windpowergenerationisoftenlocatedinremoteorrurallocations,whichrequirestheinstallationofnewtransmission.Becausewindresourcestypicallyhavecapacityfactorsofaround40%,itisoftenthecasethatassociatednewtransmissionratedatthefullpowercapacityoftherenewableresourceisnoteconomical.
Forsomewindpowerprojects,itmaybecost-effectivetoeither,buildtransmissioncapacityforslightlylessthanthefullnameplatecapacityoftheprojectandsimplycurtailoutputduringthesmallnumberofhoursperyearwhenoutputexceedstheavailabletransmissioncapacity,ortoaddenergystoragetoenablethedispatchoftheenergyatadifferenttime.
Energystoragetechnologiesmayprovideawaytocapturepowerproductionthatwouldotherwisebecurtailedandreserveitforatimewhenthetransmissiongridisnotloadedtocapacity.Energystoragealsoaffordsthetransmissionowner/gridoperatorachancetodefer
transmissionexpansionforaperiod;transmissioncapacityisgenerallynotincrementallyincreased.Thisabilitytodefertransmissionexpansionisanexampleofenergystorageprovidingmutualbenefitstogenerationandtransmission.However,thecostsofenergystorageoptionsneedtobecomparedtootheroptions,includingtheconstructionofnewtransmissioninfrastructure,thatbenefitallgeneratorsaswellasconsumersviaenhancedreliabilityandloweroverallcosts.
Transmissioncongestionisalreadyanissueinmanypartsofthecountry.Congestionchargesaretypicallyconsideredaspartoffuelcostadjustmentsbymostregulatedload-servingentitiesandcanbetenstohundredsofmillionsofdollarseachmonth.Theimpactofcongestionistoforcetheuseofexpensivegenerationresourcesclosertotheloadcenterinsteadoflessexpensivecoalandhydroelectricresources,whichcanbeusedinremotelocations.Therefore,large-scaleenergystorageisanotherwaytomitigatetransmissioncongestioniftheeconomicsareviable.
Aspecialcaseofcongestionreliefoccurswhenthelimitingtransfercapacitiesarenotthephysicalcapacitiesofthetransmissionpathsinquestion,butratherarereliabilitylimitsarisingfrompost-contingencyloadingorstabilityconditions.InthewesternUnitedStates,systemdynamicandtransientstabilitylimitsimposerestrictionsonthenort
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 混凝土班組承包合同范本
- Unit 3 Integration 第一課時(shí)教學(xué)設(shè)計(jì)2024-2025學(xué)年譯林版英語七年級(jí)上冊(cè)
- 教科版高中信息技術(shù)選修3教學(xué)設(shè)計(jì)-2.1.1 域名的一般知識(shí)
- 第二單元寫作《觀點(diǎn)要明確 》教學(xué)設(shè)計(jì) 2024-2025學(xué)年統(tǒng)編版語文九年級(jí)上冊(cè)
- 維修工程施工合同3
- 休閑設(shè)施租賃合同
- Unit 8 Our Clothes Topic 1We will have a class fashion show. Section A 教學(xué)設(shè)計(jì)- 2024-2025學(xué)年英語仁愛版八年級(jí)下冊(cè)
- 單元教學(xué)設(shè)計(jì)2 基于函數(shù)思想的數(shù)列大單元-高中數(shù)學(xué)單元教學(xué)設(shè)計(jì)
- 第十五章第四節(jié)《電流的測量》教學(xué)設(shè)計(jì)-2024-2025學(xué)年人教版物理九年級(jí)上學(xué)期
- 曲靖市中小學(xué)生科技素養(yǎng)課程 第6課.《觸動(dòng)傳感器》教學(xué)設(shè)計(jì)
- 2022醫(yī)院設(shè)備科工作制度
- 【23精品】蘇少小學(xué)美術(shù)三下教案全冊(cè)
- 房屋租賃(出租)家私清單
- 倉儲(chǔ)貨架ppt課件
- 《保健按摩師》(五級(jí))理論知識(shí)鑒定要素細(xì)目表
- 陳日新腧穴熱敏化艾灸新療法上篇
- 駕駛員違規(guī)違章學(xué)習(xí)記錄表
- PID烙鐵恒溫控制器設(shè)計(jì)與制作_圖文
- wincc全套腳本總結(jié)
- 簡易瞬態(tài)工況法1
- 中國鐵路總公司環(huán)境保護(hù)管理辦法(鐵總計(jì)統(tǒng)〔2015〕260號(hào))
評(píng)論
0/150
提交評(píng)論